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The success of a given inflationary model crucially depends upon two features: its predictions for
observables such as those of the cosmic microwave background (CMB) and its insensitivity to the unknown
UV physics such as quantum gravitational effects. Extranatural inflation is a well-motivated scenario that is
insensitive to UV physics by construction. In this five-dimensional model, the fifth dimension is
compactified on a circle, and the zero mode of the fifth component of a bulk Uð1Þ gauge field acts as
the inflaton. In this work, we study simple variations of the minimal extranatural inflation model in order to
improve its CMB predictions while retaining its numerous merits. We find that it is possible to obtain CMB
predictions identical to those of, e.g., theRþR2 Starobinsky model of inflation and show that this can be
done in the most minimal way by having two additional light fermionic species in the bulk, with the same
Uð1Þ charges. We then find the constraints that CMB observations impose on the parameters of the model.
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I. INTRODUCTION

In the Standard Model of cosmology, one posits, among
other things, that the early Universe was incredibly homo-
geneous, isotropic, and spatially flat but still had small,
adiabatic, and Gaussian density perturbations that had a
nearly scale-invariant power spectrum. In the recent past, a
successful combination of theory and experiments has
validated this picture. Cosmic inflation [1–9] is a mecha-
nism by which the microscopic theories (very similar to the
ones we routinely use to explain the behavior of elementary
particles in, e.g., colliders) can give rise to a Universe that
would look very much like the one posited in the Standard
Model of cosmology. One of the questions worth address-
ing in near future is whether one can learn more about the
details of inflation.
In the next decade, the upcoming cosmological experi-

ments [10–14] will help us better understand this era in the
early history of the Universe. Although better observational
data will surely help in this quest, a careful look at the
literature suggests that realistic inflation model building is a
formidable task irrespective of the available data [15]. For
example, small field inflationary potentials suffer from the
overshooting problem, while large field inflation can be
extremely sensitive to the unknown UV physics. Thus,
even though there are many models of inflation that seem to
give cosmic microwave background (CMB) predictions
that agree with recent observations (such as those of
Planck experiment [16]), a model of inflation that does
not suffer from other theoretical problems and still agrees

with experiments is a rarity. In this paper, we wish to look
for a model of inflation that achieves this.
A well-known example of a model in which there are

supposedly no issues of UV sensitivity, at least at the level
of field theory, is extranatural inflation [17].1 As we explain
in Sec. II, there are many reasons why this scenario is
preferred over natural inflation [21,22]. In extranatural
inflation, the zero mode of the fifth component of a bulk
Abelian gauge field acts as the inflaton. This field is clearly
a scalar under four-dimensional coordinate transforma-
tions. The potential of the inflaton is generated by loop
corrections of light fermions (charged under the bulk gauge
group) present in the bulk. However, it turns out that this
minimal scenario gives CMB predictions identical to those
of natural inflation, which is increasingly getting disfavored
with newer CMB data. The most recent CMB data, however,
are completely consistent with the famousRþR2 model of
inflation of Starobinsky [1]. Itmay thus beworth it to look for
variations of the minimal scenario of extranatural inflation
that give predictions identical to those of the Starobinsky
model. We propose achieving this by adding extra fermionic
species in the bulk. The observational data then constrain the
charge of these fermions under the bulk gauge group.
It turns out that the effect of adding such extra fermions

in the bulk is the addition of more sinusoidal functions to
the potential of natural inflation. Although scenarios with
such potentials have been studied for a long time in the
context of both natural inflation [23–30] and extranatural
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1It is well known that extranatural inflation requires a rather
small (Oð10−3Þ) value of a four-dimensional gauge coupling, and
this is challenging to achieve in known UV completions such as
string theory [18–20]. We do not address UV completion of
extranatural inflation in this work.
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inflation [31–35], the possibility of obtaining CMB pre-
dictions similar to those of the Starobinsky model has not
been explored (see, however, Refs. [36,37]).
This paper is organized as follows. In Sec. II, we begin

by explaining the issue of UV sensitivity of inflation and
then review the relevant details of extranatural inflation.
Then, in Sec. III, we explain our scenario and its possible
CMB predictions, show that adding a single extra fermion
in the bulk does not sufficiently improve the CMB
predictions of extranatural inflation, and then present the
minimal variation of extranatural inflation of which the
CMB predictions are identical to those of the Starobinsky
model. We then find the values of all the parameters and
scales in the model using the constraints obtained from
CMB observations. Finally, we conclude in Sec. IV.
We work with ℏ ¼ c ¼ 1 units; moreover, Mp is the

four-dimensional (4D) Planck mass, MPl is the 4D reduced

Planck mass, Mð5Þ
p is five-dimensional Planck mass, lP is

the 4D Planck length,R is the radius of the extra dimension,
L ¼ 2πR, and R is the Ricci scalar.

II. EXTRANATURAL INFLATION

Before getting into the details of extranatural inflation,
we revisit the issue of UV sensitivity of inflation, particu-
larly large field inflation [15].

A. UV sensitivity of inflation

Even though during inflation the energy density of the
inflaton field dominates the Universe, the inflaton would be
but one field in a Lagrangian that would, in any realistic
picture, contain many fields. In fact, there would at least be
Standard Model fields in the same Lagrangian. Moreover,
we might need more fields to explain, e.g., neutrino masses,
dark matter, or baryon asymmetry of the Universe or to
solve the cosmological constant problem. Moreover, there
must be new degrees of freedom that would show up near
the Planck scale, which would help unitarize the graviton-
graviton scattering at Planck scale.
Every theory is to be interpreted as a Wilsonian eective

field theory (EFT) with a physical cutoff. The Wilsonian
effective action can be obtained from the UV theory by
integrating out the physics above a UV cutoff Λ0. For
example, if, in the path integral of the theory, one integrates
out all the fields except the inflaton and also integrates out
all the high-frequency modes (above some scale Λ0) of the
inflaton, one would obtain the Wilsonian effective
Lagrangian of the inflaton, which would be of the form [38]

Leff ½ϕ� ¼ Ll½ϕ� þ
X∞
i¼1

ci
ϕ4þ2i

Λ2i
0

þ di
ð∂ϕÞ2ϕ2i

Λ2i
0

þ ei
ð∂ϕÞ2ðiþ1Þ

Λ4i
0

þ � � � ; ð1Þ

where it is assumed that a Z2 symmetry holds well in the
UV theory.
For most observables, when one performs experiments at

energies well below Λ0, the higher-dimension operators
have negligible effect. But this is not always true; e.g., the
mass of an elementary scalar is highly sensitive to all the
higher-dimension operators (see Ref. [38] for details). For
example, the m2ϕ2 inflation happens to be such that all the
Wilson coefficients in the above Lagrangian except the m2

term vanish. The question is what ensures that this will
happen. In the context of inflation, this problem is closely
related to the so-called eta problem: given that the higher-
dimension operators could renormalize m2 (with typical
contributions of the order of Λ2

0), why is m2 ≪ H2?

1. Rolling beyond the cutoff

The Wilson effective action is valid only when one
performs experiments at energies below the cutoff scale.
If the Lagrangian contains a higher-dimension operator, at
high enough energies, unitarity is violated. On the other
hand, during large field inflation, the field rolls by a super-
Planckian amount. Notice that if we have a large field
inflation ϕ > Mp, which means ϕ > Λ0, this means that
the contribution of higher powers in Eq. (1) is even higher
(unless the coefficients somehow compensate for this). This
raises the question of whether, when the field rolls by an
amount greater than the cutoff, the Wilson action is even
valid. It is often argued that, since energy density during
inflation is conveniently sub-Planckian, there is no problem
if the field vacuum expectation value (vev) changes by
super-Planckian values; but in the Wilson action, since the
field excursion is super-Planckian, unless all the infinite
Wilson coefficients are guaranteed to be small, we would
surely have a problem.
Finally, one may be concerned with how the inflaton

potential may get affected by unknown UV physics, e.g.,
loop corrections due to heavy particles, the effects of virtual
black holes, or gravitational and other instantons in, e.g.,
string theory [39,40].

B. Symmetries of UV theory: Global and gauge

The low energy EFT of inflaton thus faces a number of
problems. However, these problems can be cured if the UV
completion of this EFT has certain symmetries.
For example, if one assumes that there is a global shift

symmetry in the UV theory, this will set all the ci and di to
zero. But this will also set even m and λ to be zero. One
could then generate m by breaking the global shift
symmetry softly by an independent sector.
As far as the coefficients ei are concerned, they need not

be small since for a homogeneous inflating background
ð∂ϕÞ2 ¼ _ϕ2 þ ð∇ϕÞ2 ≈ _ϕ2 ¼ 2ϵH2. which is suppressed
by ϵ, the Hubble slow-roll parameter. Moreover, the
quantum correction to the mass of the scalar due to these
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derivative operators is δm ∝ m, while their contributions
to a scattering amplitude at energies lower than Λ0 is
negligible anyway.
The most familiar example implementing these ideas is

natural inflation [21,22]. To begin with, the inflaton is
assumed to be the Goldstone mode of a spontaneously
broken global Uð1Þ symmetry. This causes its potential to
vanish at all orders in perturbation theory. If one now also
assumes that this symmetry is anomalous, i.e., though it
exists in the classical theory, it is broken by quantum
effects, and then gauge instantons generate a potential that
is a cosine at the leading order. However, the requirement of
having large field slow-roll inflation causes the scale of
spontaneous breaking of Uð1Þ to be super-Planckian. Since
there are reasons to suspect that there can be no continuous
global symmetries in quantum gravity (see Ref. [41] and
the discussion in Sec. 4 of Ref. [42]), one must find out
alternatives to the most basic natural inflation (e.g., by
having multiple Uð1Þs [30] or by taking into account
spinodal instabilities [43]). In stark contrast, in extranatural
inflation [17], instead of global symmetries, a gauge
symmetry forbids the coefficients ci and di so that the
unknown UV physics has negligible effects on the potential
of the inflaton. A lot of recent work [18–20] has been
devoted to trying to understand the issue of possible UV
insensitivity of extranatural inflation and similar models. In
this work, however, we assume that the inflaton potential
for extranatural inflation can be protected from unknown
UV effects and focus on improving its CMB predictions.

C. Extranatural inflation in a nutshell

In the rest of the paper, we will restrict our attention to
quantum field theory in a five-dimensional (5D) spacetime
in which the fifth dimension is compactified on a circle; i.e.,
the spacetime in the absence of gravity is M4 × S1. The
coordinates on this 5D spacetime are denoted as ðxμ; yÞ.

1. Basic set-up

Since the extradimensional coordinate y is identified to
yþ 2πR, for all fields, Φðxμ; yÞ ∼Φðxμ; yþ 2πRÞ.
By mode expansion, one can verify that a single 5D (i.e.,

bulk) Abelian gauge field AM is equivalent to the following
fields (it is easiest to see the field content in the so-called
“almost-axial” gauge; see, e.g., Ref. [44] for details):

(i) Að0Þ
5 , which is a gauge-invariant, massless 4D scalar

with no tree-level potential (this will act as the
inflaton);

(ii) Að0Þ
μ , which has a residual gauge invariance, a

massless 4D vector;
(iii) AðnÞ

μ , an infinite tower of massive 4D vectors [the
Kaluza-Klein (KK) modes of the vector].

Before proceeding, it is worth noting that in five
dimensions a gauge field has mass dimension 3=2, while
the corresponding 5D gauge coupling g5 has mass

dimension −1=2. Of course, the 4D gauge coupling is
dimensionless; in fact,

g4 ¼
g5ffiffiffiffiffiffiffiffiffi
2πR

p : ð2Þ

One can define the dimensionless and gauge-invariant field

θðxÞ ¼ g5

I
dyA5ðxμ; yÞ; ð3Þ

which is also the gauge-invariant Wilson loop of A5 along
the extra dimension (and, as we shall see, is going to be
very simply related to the inflaton field). It is easy to verify
that this integral will pick only the contributions from the
zero mode of the fifth component of the bulk Abelian gauge

field, i.e., Að0Þ
5 .

If bulk matter is present, a potential for Að0Þ
5 and hence

the inflaton is readily generated. If there is one bulk matter
field that is charged under the gauge symmetry of the 5D
Abelian gauge field (e.g., a bulk complex scalar field or a
bulk spinor field), and hence has a charge Q, then the
gauge-covariant derivative in its Lagrangian will be given
by DM ¼ ∂M − iQg5AM. From the 4D point of view, this
bulk matter field will give rise to an infinite tower of KK
modes. Thus, from the 4D point of view, the 4D-scalar-field

Að0Þ
5 has coupling to all these infinite matter fields. So,

every KKmode of the matter field will generate a Coleman-

Weinberg potential for Að0Þ
5 . For a bulk matter field with

mass ma and Uð1Þ charge Qa, the Coleman-Weinberg
potential of θ due to the KK modes of this bulk matter field
is given by (see Refs. [45–47] for some early references,
Ref. [48] for a particularly accessible derivation, and
Refs. [20,31] for some relatively recent papers)

VðθÞ ¼ � 3

64π6R4

�X∞
n¼1

cne−2πRnmaReðeinQaθÞ
�
; ð4Þ

where

cn ¼
1

n5
þ 2πRma

n4
þ ð2πRmaÞ2

3n3
ð5Þ

and the þ sign is for fermionic matter, while the − sign is
for bosonic matter.
If the bulk matter is massless (or has a mass very small as

compared to R−1), taking the ma → 0 limit in the above
expression gives

VðθÞ ¼ � 3

64π6R4

X∞
n¼1

cosðnQaθÞ
n5

: ð6Þ

Finally, for the sake of completion, when one turns on
gravity, the spacetime will have a curved geometry but will
still retain the topology ofM4 × S1. The radius of the circle
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will then be different at different points of 4D spacetime
and will be determined from the vev of a scalar field called
the radius modulus (or radion). The 5D Einstein gravity
gives rise to the following:

(i) hð0Þ55 , which is gauge invariant, is a massless 4D
scalar with no tree-level potential (this is the radius
modulus or the radion, and its vev will have to be
stabilized to a value large enough so that the inflaton
potential can be kept protected from unknown UV
effects).

(ii) hð0Þ5μ , which has a residual gauge invariance, is a
massless 4D vector (the graviphoton).

(iii) hð0Þμν , which has a residual gauge invariance, is a
massless spin-2 particle (the familiar 4D graviton).

(iv) hðnÞμν is an infinite tower of massive KK gravitons.

2. The various fields in extranatural inflation

We thus have a 5D Abelian gauge field, 5D Einstein
gravity, and bulk matter (and, if required, bulk cosmologi-
cal constant and brane tension). We would be interested in
solutions in which the radion is stabilized (i.e., it sits at the
bottom of its potential) so that the physical size of the extra
dimension is fixed. On the other hand, the inflaton is rolling
down, and hence the effective 4D cosmological constant is
positive and dominates the dynamics of the Universe; thus,
the 4D universe is undergoing inflation. In this work, the
vaccum energy at the minimum of the inflaton potential is
assumed to be zero.

D. Connection to natural inflation

If we specialize to the case of the potential generated due
to just light fermions in the bulk and notice that the
subsequent terms in Eq (6) are suppressed so that the term
with n ¼ 1 dominates, the potential due to only one
fermion in the bulk will be of the form

VðθÞ ≈ 3

64π6R4
cosðQaθÞ: ð7Þ

The dimensionless field θðxÞ is canonically normalized
to [17]

ϕ ¼ θ

g4ð2πRÞ
; ð8Þ

which is the inflaton; this gives

VðϕÞ ≈ 3

64π6R4
cosðQag42πRϕÞ: ð9Þ

If we now define

f ¼ 1

2πRg4
; ð10Þ

then

VðϕÞ ≈ 3

64π6R4
cos

�
Qaϕ

f

�
: ð11Þ

If one adds an appropriate constant to this potential in order
to keep the minimum of the potential at zero vacuum
energy,2 one obtains the potential of natural inflation

V ¼ Λ4

�
1þ cos

�
ϕ

feff

��
; ð12Þ

where the overall factor Λ in Eq. (12) is given by

Λ4 ¼ 3

64π6R4
: ð13Þ

It is clear from Eq. (12) that CMB data are sensitive to the
“decay constant” feff ¼ f=Qa. Thus, it is only the ratio of f
[defined by Eq. (10)] and Qa, which can be determined
from the data.
In summary, if we have just one light fermion in the bulk

with Uð1Þ charge unity, then the predictions of extranatural
inflation are identical to those of natural inflation to a very
good accuracy. It is, however, noteworthy that the most
recent CMB data disfavor natural inflation at 2σ statistical
significance [16].

E. Merits of extranatural inflation

Before proceeding, it is worth noting that in extranatural
inflation, even though the effective scale f appears to be
super-Planckian in the 4D description, there is no super-
Planckian mass scale involved in the 5D description. This is
because a super-Planckian “axion decay constant” can be
obtained by having a small 4D gauge coupling,

f
MPl

¼ 1

2πg4ðRMPlÞ
: ð14Þ

Moreover, heavy particles that are uncharged under the
bulk Uð1Þ gauge symmetry cannot affect the inflaton
potential, while, although the potential gets affected by
the loops of heavy particles that are charged under the bulk
gauge symmetry, this effect is exponentially suppressed
[see Eq. (4)].
The only remaining concern is the super-Planckian

excursion of the inflaton since there is the possibility that
quantum gravitational effects could still affect the potential.
In Ref. [17], it is mentioned that, since the super-Planckian
decay constant originates from sub-Planckian mass scales,
the authors expect that quantum gravitational effects on the
potential go at most as ∼e−2πRM5 (the exponential is

2This is equivalent to assuming a solution to the cosmological
constant problem [49].
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suppressed by the Euclidean action of a relativistic particle
going around the extra dimension). A look at the recent
literature lends credence to the notion that the jury is still
out on the validity of such estimates [39,40]. We also note
that successful large field inflation in extranatural inflation
is achieved by assuming the 4D gauge coupling to be too
small. This may be harmless in field theory but, as is well
known [18], strongly resists any embedding in string
theory. In this work, we shall not be exploring these
fascinating issues any further but instead turn to observa-
tional constraints.

III. CMB OBSERVATIONS AND PARAMETERS

We saw in the last section that one light fermion in the
bulk leads to a potential that, to leading order, is of the form
of a cosine. To aid the discussion, we will use the phrase
“first fermion” to refer to the bulk fermion of which the
loop corrections generate the potential of natural inflation.
We now turn our attention to variations of extra natural
inflation in which additional fermions shall be present in
the bulk [31,50]. It is worth noting that we only consider
the additional fermions to be light as compared to the
KK scale.
Let us suppose we have one light fermion with chargeQa

and then N copies of another light fermion with charge Q;
then, the potential of the inflaton would be

VðϕÞ ¼ 3

64π6R4

�X∞
n¼1

1

n5
cos

�
nQaϕ

f

�

þN
X∞
n¼1

1

n5
cos

�
nQϕ

f

�
þ C

�
: ð15Þ

The constant C in the above potential is chosen such that
the vacuum energy of the minimum of the potential is zero.
Since it is only the ratios f=Qa and f=Q that determine the
arguments of the cosines, we could set Qa to 1 and hence
rescale Q and f accordingly. Thus, if we have one light
fermion with charge þ1 and thenN copies of another light
fermion with charge Q, then the potential of the inflaton
would be

VðϕÞ ¼ 3

64π6R4

�X∞
n¼1

1

n5
cos

�
nϕ
f

�

þN
X∞
n¼1

1

n5
cos

�
nQϕ

f

�
þ C

�
: ð16Þ

Notice that this is quite different from the potentials dealt
with in, e.g., multinatural inflation, in which the ampli-
tudes, frequencies, and phases of the two cosines could all
be arbitrarily different from each other. Thus, one comes
across a more constrained scenario simply due to the
extradimensional embedding of our model. In the rest of

this section, we show that with this simple choice of particle
content there exist parameter choices that will lead to CMB
predictions identical to those of the RþR2 model of
inflation of Starobinsky [1].

A. Slow-roll inflation

Irrespective of how complicated the inflaton potential is,
if the potential slow-roll parameters, defined by

ϵV ≡M2
pl

2

�
V 0

V

�
2

; ð17Þ

ηV ≡M2
plV

00

V
: ð18Þ

are small as compared to unity at the time when the pivot
scale k� crossed the Hubble radius during inflation, the
primordial scalar and tensor power spectra are given by
power functions of the wave number. Thus, in slow-roll
inflation, the primordial scalar and tensor power spectra are
given by

PsðkÞ ¼ As

�
k
k�

�
ns−1

; ð19Þ

PtðkÞ ¼ At

�
k
k�

�
nt
; ð20Þ

where the amplitude of the scalar power spectrum As, the
tensor-to-scalar ratio, and the scalar spectral index ns are
given, respectively, by

As ≈
V

24π2M4
plϵV

; ð21Þ

ns ≈ 1þ 2ηV − 6ϵV; ð22Þ

r ≈ 16ϵV: ð23Þ

Given these, other quantities such as the amplitude of the
tensor power spectrum At and the tensor spectral index nt,

At ≈
2V

3π2M4
pl

; ð24Þ

nt ≈ −2ϵV: ð25Þ

can easily be found from the relations At ¼ rAs and
nt ¼ −ðr

8
Þ.

Recall that if the pivot scale k� goes out of the Hubble
radius during inflation at an epoch that was N� e-foldings
from the end of inflation, then we expect, for grand unified
theory scale inflation, N� to be between 50 and 60, and in
the following, we shall set N� to 60. For the potential given
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in Eq (6), for any choice of the parameters N , R, f, and Q,
one can numerically find ϕend, the value of the inflaton field
when inflation ends, and then use3

NðϕÞ ¼
Z

ϕ

ϕend

dϕ

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵVðϕÞ

p ð26Þ

and find ϕ�, the value of the inflaton field when the pivot
scale exited the Hubble radius. Finally, one can find the
corresponding value of slow-roll parameters corresponding
to ϕ� and hence the scalar and tensor power spectra.

B. Numerical results

Lets us now see how the CMB predictions (i.e., As, ns,
and r) in this scenario change as we explore the parameter
space of N , R, f, and Q. We would like to restrict our
attention to the region of parameter space that offers slow-
roll inflation and that yields ns and r that are most
compatible with the Planck measurements, i.e., 2015
Planck TT,TE,EE+lowP data [16]. These data imply that
ns ¼ 0.9652� 0.0047 at 1σ C.L., while r < 0.099 (for
k� ¼ 0.002 Mpc−1) and As ¼ 2.2065þ0.0763

−0.0738 × 10−9.
Notice that in slow-roll inflation ns and r are completely

determined by the slow-roll parameters and hence do not
depend on any overall multiplicative factor in the potential.
The value of any overall factor in the potential, e.g., R in
Eq. (16), can be adjusted to ensure that As matches the
observed value and is thus determined by As and not ns
and r.
When N ¼ 0, one recovers the minimal version of

extranatural inflation. Its predictions for the spectral index
and the tensor-to-scalar ratio are identical to those of
natural inflation, and this model is mildly (> 2σ) disfavored
by the Planck data [16]. If we restrict our attention to the
case Q ¼ 1, then, no matter what value of N one works
with, it is only R that will be redefined. This will not change
the slow-roll parameters and hence will not change the
spectral index and the tensor-to-scalar ratio. Thus, the CMB
predictions in this case will not be any better than those of
natural inflation. Similarly, the case Q ¼ 0 will only
redefine C. Moreover, since cosine is an even function,
for any given N , the sign of Q is unimportant. By
numerically solving the underlying equations, one can also
find the following: i. for f ≤ 1.5, the assumption ηV ≪ 1 no
longer remains valid, and therefore one of the slow-roll
conditions gets violated. Since we wish to restrict our
attention to slow-roll inflation, we choose to investigate the
cases with f > 2 in this work. Large values of f yield
values of ns and r which are inconsistent with the most
recent data, and hence 2 ≤ f ≤ 3. ii. For a fixed value of f,

the slow-roll conditions get violated if Q ≥ 2 or Q < 0.5.
So, we restrict ourselves to the range 0.5 ≤ Q ≤ 1.5.
For a given combination of N and f, as one changes Q,

the charge of the additional fermion in the bulk, the
predictions for ns and r change, and we get trajectories
in the ns − r plane that are parametrized byQ. Although the
detailed shape of the curve depends on the choice ofN and
f, for any such choice, there is typically a range of Q that
will yield slow-roll inflation, and the corresponding tra-
jectories in the ns − r plane can then be found. For
example, for the case N ¼ 1, f ¼ 4, as one increases
the charge from Qi ¼ 0.5 to Qf ¼ 1.55, one gets curves of
the form shown in Fig. 1. For any given f, one can find the
trajectories in the ns − r plane for the various values of Q,
and one can then change f and repeat this. Thus, for a given
N , one obtains a family of trajectories in the ns − r plane.
Let us now look at what happens as we choose various
values of N .

1. N = 1

The case N ¼ 1 corresponds to two fermions in the
bulk. The charge of the first fermion has been set to þ1,
while that of the second one isQ. For this case, as shown in
Fig. 2, as one plots the family of trajectories corresponding
to different f and different Q, one finds that no choice of
parameters brings us inside the 1σ contours.

2. N = 2

We now argue that for the case with N ¼ 2, i.e., three
fermions in the bulk, there exists a range of values of f and
Q for which the CMB predictions improve significantly.
For example, if one chooses R ¼ 28.7 (in units of reduced
Planck length), f ¼ 2.5, and Q ¼ 0.582, then one finds
(for N� ¼ 60) that ns ¼ 0.973, As ¼ 2.19 × 10−9, and
r ¼ 0.0036. This must be compared with the predictions

0.90 0.91 0.92 0.93 0.94 0.95
0.000

0.005
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FIG. 1. For a fixed f ¼ 4MPl, changing the charge Q on the
additional fermion leads to a trajectory in the ns − r plane
parametrized by Q as shown here (for the case N ¼ 1). As
we increase the chargeQ from 0.5 to 0.71, we go from point A to
C via point B. At C, there is a turning, the corresponding
Q ¼ 0.71. Further increasing Q from 0.71 to 1.55 takes us from
C to the points D and E along the path shown.

3It is worth noting that we have replaced ϵH with ϵVðϕÞ in
order to get this relation.
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for the Starobinsky model (for N� ¼ 54): r ¼ 0.004 while
ns ¼ 0.963.
If we restrict our attention to the range

2.0 < f < 3; 0.5 < Q < 0.75; ð27Þ

first, as is shown in Fig. 3, for each value of f in the above
range, there exist values ofQ for which ns lies within the 1σ
allowed region. When f is in this range, increasing Q from
0.5 first increases ns such that for a small range of values of
Q ns does fall within the observationally preferred range. It
then reaches its local maximum value and then decreases.
While decreasing, the value of ns again falls within the
observationally preferred range. Second, as Figs. 4 and 5
indicate, for this range of parameters, the tensor-to-scalar
ratio stays below 0.02, and this is true irrespective of the
values of Q and f.

In summary, when one is in the range specified by
Eq. (27), r stays below 0.02; changing Q essentially
changes ns, f has a small effect on ns and r, and (as
was mentioned earlier) R essentially determines As. One
finds that there must be some combination of f and Q that
leads to ns and r that are identical to those obtained in the
Starobinsky model (see, e.g., Fig. 5).
We thus learn that adding fermions in the bulk with

appropriately chosen charges can improve the CMB pre-
dictions of extranatural inflation. Moreover, CMB data
suggest that N ¼ 2, R ≈ 29 M−1

Pl , f ≈ 2.5 MPl, and
Q ≈ 0.58.

C. Constraints on derived parameters

Since the basic parameters of this scenario are con-
strained by CMB data, it may be a good idea to find the
constraints on the other, derived parameters. But before we
do so, since there are many scales in the problem, it will be
a good idea to get some feel for their relative hierarchies
before proceeding. Let lP be the 4D Planck length, L
(¼ 2πR) be the size of the extra dimension, Mp be the 4D

Planck mass, and Mð5Þ
p be the 5D Planck mass; then [51],

L ¼
�
Mp

Mð5Þ
p

�
3

lP; ð28Þ

and this implies that

0.90 0.92 0.94 0.96 0.98 1.00
0.00

0.02

0.04

0.06

0.08

0.10

ns

r

FIG. 2. When N ¼ 1, no matter what values of f and Q are
chosen, one never obtains the values of ns and r that are inside the
1σ contours of Planck TT,TE,EE+lowP data. Thus, there is no
hope of obtaining CMB predictions similar to those of the
Starobinsky model.

FIG. 3. The behavior of ns as one changesQ for a fixed value of
f (in units of the reduced Planck mass). The horizontal lines
correspond to the 1σ limits on ns for the 2015 Planck TT,TE,EE
+lowP data.
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0.16

r

FIG. 4. The trajectories in the ns − r plane as one increases Q
for a fixed f. The two curves correspond to f ¼ 3.0MPl (dashed)
and f ¼ 2.5MPl (solid), respectively. The predictions of the
Starobinsky model for ns and r are also shown for reference.
The shaded regions show the 1σ and 2σ contours for the 2015
Planck TT,TE,EE+lowP data.
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L−1

Mð5Þ
p

¼ L−1

Mp

Mp

Mð5Þ
p

¼
�
Mð5Þ

p

Mp

�2

: ð29Þ

Now, in five dimensions, the energy scale of quantum

gravity isMð5Þ
P , while L−1 is the cutoff scale of 4D EFT. So,

L−1 must be smaller thanMð5Þ
p , so from Eqs. (28) and (29),

Mp > Mð5Þ
p : ð30Þ

Using Eq. (10) and the fact that we typically need f >
Mp to be consistent with data, one concludes that

g4

�
Mp

Mð5Þ
p

�
3

< 1: ð31Þ

Since the 5D Planck mass (i.e.,Mð5Þ
p ) is smaller than the 4D

Planck mass (i.e.,Mp), the above inequality implies that we
must have

g4 ≪ 1: ð32Þ
Moreover, since the 5D gauge coupling has a negative mass
dimension, Eq. (2) implies that the unitarity bound of the
theory is Estrong ¼ 1=ð2πRg24Þ so that when the energy scale
of any process is of this order perturbative unitarity gets
violated. Thus,

Estrong

f
¼ 1

g4
≫ 1: ð33Þ

Similarly, Eq. (6) implies that V ∼ L−4, while the
Friedman equation implies that the Hubble parameter
during inflation is given by H2 ¼ 8πV

3M2
p
so that

H ¼
ffiffiffiffiffiffi
8π

3

r
1

L2Mp
; ð34Þ

and hence

H
L−1 ¼

ffiffiffiffiffiffi
8π

3

r
L−1

Mp
≪ 1: ð35Þ

The above analysis implies that

Estrong ≫ f ≫ Mp > Mð5Þ
p > L−1 ≫ H: ð36Þ

Let us now find the numerical values of all of these
ratios, given the best-fit values of R and f. Obviously,
Mp ¼ ffiffiffiffiffiffi

8π
p

MPl ¼ 5.013MPl, and the 4D gauge coupling
g4 ¼ ð2πRfÞ−1 is given by

g4 ¼ 0.0022: ð37Þ

The energy scale Estrong ¼ 1.13 × 103MPl, the five-

dimensional Planck scale is given by Mð5Þ
p ¼0.518MPl, the

scale R−1 ¼ 0.035 MPl, and, finally, H ¼ 1.77 × 10−5 MPl.
Any scenario in which the UV completes extranatural

inflation then needs a mechanism to keep g4 at 2.2 × 10−3

and R ≈ 30 M−1
Pl . Adding bulk fermions will surely desta-

bilize the potential of the radion and cause the extra
dimension to contract to Planckian values [52]. To keep
the size of the extra dimension fixed to the desired value,
the vev of the radius modulus must stay put at the desired
value. There are many ways of dealing with this problem,
and the most harmless one is to use stabilizer fields à la
Goldberger-Wise [53] to ensure that the extra dimension
stays sufficiently large. Since these fields need not be
charged under the gauge group of the bulk gauge field, the
inflaton potential and hence inflationary predictions will
not be affected by employing this mechanism. This
mechanism will work only if the radion is not excited
during inflation. The condition for this is that the mass of
the radion must be large as compared to H.

IV. SUMMARY AND DISCUSSION

There seems little doubt that cosmological experiments
of the next generation will be able to reduce the uncer-
tainties in various inflationary observables to a very high
degree. For example, it is expected that within a decade the
uncertainties in the tensor-to-scalar ratio, i.e., σðrÞ, will be
of the order of 0.0005 [11], while those in the running of
the scalar spectral index (αs) will be of the order of 0.0025
[14]. It thus seems that in the near future we shall uncover
the shape of the inflaton potential with unprecedented
accuracy. Given this optimistic state of affairs, one must
ensure that the mechanisms that lead to the inflaton
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0.008
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0.014

0.016

0.018
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FIG. 5. This is a “zoomed-in” form of the previous figure; this
shows that for f between 2.5MPl (solid) and 3.0MPl (dashed) and
Q between 0.55 to 0.75 there exists a combination of f andQ that
will give predictions identical to those of the Starobinsky model.
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potential are completely trustworthy from a theoretical
perspective.
The CMB observations of even the current generation

have imposed tight observational constraints on many
scenarios of cosmic inflation. A model of which the
CMB predictions are compatible with the observations
of Planck experiment is the RþR2 model of inflation of
Starobinsky [1] (see also Ref. [54]). If one considers
higher-dimensional corrections to Einstein-Hilbert action,
i.e., R

2κ2
þ αR2 þ βRμνRμν þ γRμνρσRμνρσ , one can use the

Chern-Gauss-Bonnet theorem (i.e., the fact that R2 −
4RμνRμν þRμνρσRμνρσ is a topological invariant) to elimi-
nate the term with a Riemann tensor. Now, the Starobinsky
model is based on the assumption that among κ, α, and β in

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ αR2 þ βRμνRμν

�
þ � � � ð38Þ

one can pick only the R
2κ2

þ αR2 terms and adjust the
coefficients to ensure that one obtains CMB predictions.
This is sensible because, among one-loop quantum cor-
rections to the Einstein-Hilbert action, the terms other than
R
2κ2

þ αR2 vanish when the metric is conformally flat (e.g.,
a spatially flat FRW metric) as happens after a sufficient
duration of inflation. However, if κ is 4D reduced Planck
length, CMB observations imply that the dimensionless
coefficient α is Oð109Þ. Given this, one might wonder
whether assuming α to be too large and β to be negligible
may appear to involve some fine-tuning, but notice that,
since β is small due to a symmetry reason, its smallness
may be protected from loop corrections. Similarly, if one
resorts to coupling the inflaton field nonminimally to
gravity in order to obtain successful CMB predictions,
super-Planckian vevs may make it hard to justify including
just the one higher-dimensional operator Rϕ2 while ignor-
ing all others (see, however, the discussion in Sec. 5.1 of
Ref. [55]). But the super-Planckian field excursion in the
Einstein frame field in both the cases discussed
(Starobinsky as well as nonminimal coupling) suggests
that one may need to include even higher-order terms.
Given this, a scenario of large field inflation that does not
suffer from such uncertainties and nonetheless makes
successful predictions that can be tested in next-generation
experiments must be seriously sought. In this work, an
attempt has been made to find one such model.
Ultraviolet sensitivity of large field inflation persuades

one to resort to symmetries to protect the inflaton potential.
The minimal natural inflation uses global symmetries to
deal with this, but since there can be no global symmetries
in quantum gravity [41,42], a better alternative is to employ
gauge symmetries for this task. Extranatural inflation does
exactly this; the inflaton is the zero mode of the fifth
component of a bulk Abelian gauge field of which the
potential is generated by charged fermions present in the

bulk. The required value of gauge coupling to achieve the
same, however, turns out to be quite small. This small value
of this 4D gauge coupling has been a topic of discussion in
the literature since the failure to obtain such small values of
the gauge coupling in known UV completions such as
string theory [18] has inspired the famous weak gravity
conjecture [19]. The exact value of gauge coupling is thus
of paramount importance.
However, the most minimal version of extranatural

inflation gives predictions identical to those of natural
inflation, which is mildly disfavored by current CMB data.
One may wonder whether one could have a variation of the
minimal version of extranatural inflation which fits the data
with a reasonable value of 4D gauge coupling g4. In this
work, we studied the effect of additional charged, light,
fermions in the bulk on the CMB predictions of extra-
natural inflation. We have found that the one needs to add at
least two more fermion species in the bulk in order to
improve the fit to CMB data and if the radius of the extra
dimensions is R ≈ 29 M−1

Pl , f ¼ 2.5 MPl and the charges of
the additional fermions are Q ¼ 0.58 (in units of charge of
the fermion that generates the potential of extranatural
inflation), one obtains CMB predictions very close to those
of the Starobinsky model. One can readily determine the
corresponding value of g4, and it turns out to be
g4 ¼ 0.0022. Since this value still turns out to be too
small, we have essentially shown that, although adding
more fermions can help improve the fit to CMB, this does
not resolve the problem of the smallness of gauge coupling.
In any case, it is this value of the 4D gauge coupling that
needs to be targeted in the UV completions of extranatural
inflation.
In summary, we have presented a model of cosmic

inflation that has the merit that its predictions can be
identical to those of the Starobinsky model and that can
potentially be free from all issues of UV sensitivity,
provided one can find a UV completion in which the 4D
gauge coupling turns out to be as small as required. Apart
from looking for appropriate UV completions, in the future,
one could make use of the light bulk fermions in the model
to tackle with other problems of the physics of the early
Universe, e.g., matter-antimatter asymmetry or dark matter.
Since the masses and charges of such fermions are already
constrained by CMB data, this can be a very interesting
exercise.
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