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Maximum entropy deconvolution of primordial power spectrum
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It is well known that cosmic microwave background (CMB) temperature anisotropies and polarization
can be used to probe the metric perturbations in the early universe. Presently, there exists no observational
detection of tensor modes of primordial metric perturbations or of primordial non-Gaussianity. In such a
scenario, the primordial power spectrum of scalar metric perturbations is the only correlation function of
metric perturbations (presumably generated during inflation) whose effects can be directly probed through
various observations. To explore the possibility of any deviations from the simplest picture of the era of
cosmic inflation in the early universe, it thus becomes extremely important to uncover the amplitude and
shape of this correlation sufficiently well. In the present work, we attempt to reconstruct the primordial
power spectrum of scalar metric perturbations using the binned (uncorrelated) CMB temperature anisot-
ropies data from WMAP 9-Year, using the maximum entropy method or MEM to solve the corresponding
inverse problem. Our analysis shows that, given the current CMB data, there are no convincing reasons to
believe that the primordial power spectrum of scalar metric perturbations has any significant features.
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I. INTRODUCTION

Observations of cosmic microwave background (CMB)
temperature anisotropies as well as polarization [1,2] can
be used to uncover the physics of the early universe, e.g., of
cosmic inflation [3] However, calculations of power spec-
tra of CMB anisotropies and polarization [4,5] involve
making a number of assumptions, e.g., about the reioniza-
tion history of the universe, the equation of state of dark
energy etc. It is also usually assumed that the primordial
power spectrum of scalar metric perturbations (denoted by
sPPS in this work) is a power law (with a small running).
One can then use the CMB observational data to put
constraints on the values of various cosmological parame-
ters [6] including the ones specifying sPPS (usually
denoted by Ay, ng etc). Since this procedure leads to
“reasonable‘‘ values of these parameters, it is often said
that a power law sPPS is consistent with the observed data.
But it is worth noticing that this is just an assumption.

Cosmic inflation is the most actively investigated para-
digm for explaining the origin of anisotropies in CMB sky
as well as the large scale structure of the universe. The
simplest versions [3,7,8] of inflationary models give a
smooth, nearly scale-invariant (tilted red) sPPS. But there
are other models which are capable of giving more
complicated forms of sPPS (abnormal initial conditions,
multifield models, interruptions to slow roll evolution,
phase transition during inflation, see e.g., [9—14]). Are
these models ruled out by the present data? Even though
power law sPPS is consistent with the data, the assumption
of a power law PPS (with small running) is just that: a well-
motivated assumption. It is worth checking how the models
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in which sPPS is not just a simple power law with a small
running fare against the present available data.

This can be done in various ways, e.g., one could try to
redo cosmological parameter estimation with the actual
form of sPPS left free (see, e.g., [15]). Another option is
to work with inflationary models which lead to features in
sPPS and redoing parameter estimation for those models
(see, e.g., [9,16]). This exercise illustrates that (i) models in
which sPPS is not this simple also do fit the data and
(i1) very often, with these models, one can get a better fit
to the data than with a power law with small running.

Given this situation, a reasonable possibility is to try to
directly deconvolve sPPS from observed CMB anisotro-
pies (i.e., C¢s). Previous attempts [17], (see also [18]), at
doing so seem to suggest the existence of features in sPPS
(the statistical significance of which is still being assessed
[19)), e.g., a sharp infrared cutoff on the horizon scale, a
bump (i.e., a localized excess just above the cutoff) and a
ringing (i.e., a damped oscillatory feature after the infrared
break). This is consistent with many existing models of
inflation and this has also motivated theorists to build
models of inflation that can give large and peculiar features
in primordial power spectrum (see [9—-14]).

Given the fact that primordial power spectrum of scalar
metric perturbations is the only cosmological correlation
whose effect is, at this stage, observable in the universe
(primordial non-Gaussianity is yet to be detected in CMB
data, so are B-modes of polarization of CMB due to infla-
tionary gravitational waves), it becomes important to settle
this issue of possible existence of features.

The sPPS cannot be modeled as any arbitrary function
since the noise at small scale starts dominating the recov-
ered power spectrum [20]. Only a small subset of functions
have been used for modeling sPPS and featureless sPPS
with (small) running are the simplest ones which add only
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one extra parameter which can be estimated using, for
instance, Markov chain Monte Carlo (MCMC) analysis.
In order to reconstruct sPPS, the Planck team considered a
binned power spectrum with external constraints and maxi-
mized a penalized likelihood which is essentially a form of
regularization [20]. As has been argued in [15], if we let the
power in k-space bins free, then the number of parameters
becomes too large to be handled with MCMC. The Planck
team has used the Newton-Raphson method to estimate
sPPS in bins (keeping the other parameters fixed to their
best fit values). We also consider a binned sPPS for our
reconstruction and use external constraints in the form of
maximum entropy regularization. However, our regulari-
zation function (entropy) is nonlinear, therefore we use a
much more complex scheme for optimization (which is
inspired by the work of Skilling and Bryan [21]) rather than
the Newton-Raphson method.

Thus, in the present work, we try a new method of
probing the shape of primordial power spectrum, the maxi-
mum entropy method, or MEM [22-24]. We begin in
Sec. II by broadly describing the problem and its various
attempted solutions. Then, in Sec. III, we describe in detail
the algorithm that we have used. This is followed by
Sec. IV in which we apply the algorithm to binned CMB
temperature anisotropies data. We conclude in Sec. V with
a discussion of salient features, limitations and future
prospects for the work. In Appendix A, we present the
results of applying the method on a toy problem and in the
process illustrate the use of the algorithm.

II. THE DECONVOLUTION PROBLEM

A. Formulation as an inverse problem

The scalar primordial power spectrum (sPPS) is the
(dimensionless) power spectrum of comoving curvature
perturbation, A?(k) and is defined by

: / 27 VA2
7—0 k

where 7) is the conformal time (and at early times, all the
modes of interest have wavelengths much bigger than the
Hubble radius, so that all the correlations of comoving
curvature perturbation, {(z, x) freeze). For a power law
sPPS,

A2K) = AS%)"“, @

where Ag is the scalar spectral amplitude and ng is the
scalar spectral index and k is a pivot scale. We address
the issue of reconstructing the shape of the sPPS by
attempting to directly solve the (noisy) integral equations
giving the CMB angular power spectrum using MEM. The
observed CMB TT angular power spectrum is given by
(see, e.g., [25]),
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Here, € is the multipole moment, k is the wave number, and
the quantity in the square brackets is the radiation transfer
function (71, denotes the value of conformal time today)
and A%D(k) is the dimensionless power spectrum of the
(only) scalar metric perturbation in Newtonian gauge
(often called Bardeen potential, ®@). Assuming a given
set of values of background cosmological parameters, the
radiative transport kernel can be found (see Sec. IV), we
can then formulate the problem we are dealing with as the
solution of a set of integral equations, i.e., as an inverse
problem. In matter dominated universe (at the epoch of
recombination), at linear order in perturbation theory,
® = (3/5), so, for a power law PPS, theoretical
CIT (in uK?) shall be

3T, 2 fodqdk k \ns—1
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We shall now replace A S(”%)z(%)”fl by a general func-
tion f(k) and shall try to find it. We thus have

- [(ER@antknorst. )

with
flk) = (3T§MB)2A§(k). (6)
Given the temperature radiation transfer function

(Ar¢(k, mp)), the theoretical C!7 can be found from
Eq. (3), provided we know the sPPS. The € range for which
we wish to evaluate the transfer function and the corre-
sponding Cys goes from € = 2 to € = [, = 1500. The
typical behavior of the function

4
G(6, k) = dk%(Are(k, 70))> (7

is shown in the Fig. 1 (with dk chosen such that the integral
in the definition of C, can be evaluated to a high enough
accuracy).

For every given €, the radiation transport kernel is a
highly oscillatory function of the wave number k. But for
any ¢, it has significant (i.e., non-negligible) values only
within a small range of k values. The brightness fluctua-
tions roughly go as j,[k(ny — 7.)] (where j, is spherical
Bessel function while 7). is the conformal time at the epoch
of recombination), thus the minimum value of € sets a
minimum value of k at which the kernel takes up non-
negligible values. This procedure tells us that since the
radiation transfer function is negligible for k < k;,, no
matter how much power is there in sPPS at very small k
values, the CMB anisotropies cannot be used to probe the
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FIG. 1 (color online). The radiation transfer function G(/, k),
as defined by Eq. (7), is an oscillatory function of wave number k
for all multipoles €. In this figure, the behavior of the kernel
G(l, k) is shown for € = 2 (bigger peaks) and € = 3 (smaller
peaks).

sPPS at these (very large) scales. This sets the k;, below
which we cannot probe the sPPS. Similarly, given the fact
that we have observations only till a maximum value of ¢,
this sets the maximum value of k up to which we need to
sample the kernel; thus, the smallest possible angular
resolution of a CMB experiment shall set the /,, that
we can probe which shall set a ki, , i.e., SPPS at scales
smaller than this scale can not be probed by CMB experi-
ments. Thus, € = 2 determines k,;, while € = [, deter-
mines k,, . Within this range, one discretizes the k space
in such a way that the transfer function can be sampled
sufficiently well and the above integral can be performed to
the desired accuracy.’

Apart from this consideration, the actual observed C,s
are also noisy (due to cosmic variance, instrumental noise
and the effect of masking the sky). Thus Eq. (3) can be
written as a set of linear equations

Ce=Y Gufi+CY, (8)
k=1

where n, is the number of bins in k space and Cf;' is the
noise term. Thus, the problem we wish to solve is: given
the matrix G, the few observations (Cys), the moments of
the random variables C), how can we find the set of
numbers f;? In this paper, we shall use the binned CMB
data to find sPPS. The number of (binned and hence
uncorrelated) data points (WMAP) is 45 (call it n,). To
sample the kernel satisfactorily, we divide the k space into
6200 points (n,). Thus, we have a problem with a set of
45 noisy linear equations and 6200 unknowns to be
determined.

'As we shall see in Sec. IV, this number is 6200, thus our
Glk matrix shall have dimensions 1499 X 6199 (= 9292301
entries).
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B. Bayesian inversion

Recovering the primordial power spectrum f; from the
observed C; can be cast as a Bayesian inversion problem in
the following way. The posterior probability P(f|C;, Gy)
of obtaining the primordial power spectrum f}, given a
kernel G, and observed C; is given by:

P(Cllfw Gu)P(f)
P(C) ’

where P(C;|f1, Gy) is the likelihood and P(f) is the prior
probability. For our case the denominator (evidence) works
as just a normalization and we can ignore it.

For the case of Gaussian noise,” the likelihood function
can be written as

P(C)lf1 Gi) < exp[—x*/2], (10)

P(f|CL Gy) = 9

where
X' =(C, = Gpf)IN"UC, — Gifr)

[=lnax _ 2

_ Z |CZ Gzlkfkl ) (11)
1=2 g

for the case when the noise covariance matrix (N) is

diagonal.

Since for our problem, the number of unknowns, i.e., f4,
is far more than the number of knowns, i.e., C;s; therefore,
ordinary chi square minimization is of no use since it can
make the chi square too low.” In order to avoid chi square
taking unphysical values, we need some kind of regulari-
zation in the form of a prior. Instead of maximizing the
likelihood function, we maximize the posterior probability.

It has been a common practice to consider the following
form of prior for any regularization problem,

P(f) = P(fi A, S) = exp[=AS(f0)/2],  (12)

where A is the regularization parameter and S is the
regularization function. Many forms of regularization
functions (like quadratic form) have been explored in the
literature. In the present work, we use an entropy function
S(f%) as a regularization function which is defined in the
following way,

si=-3am(F)1]

where A is a parameter that parametrizes the entropy
functional we use. With the regularization function, the
posterior probability distribution can be written as

“Even though the noise on Cys is not Gaussian, we proceed
pretending the noise to be Gaussian. This is justified because by
the central limit theorem: since the chi-squared distribution is the
sum of n,; independent random variables with finite mean and
variance, it converges to a normal distribution for large n,.

Jeven if we knew all the n, parameters, the presence of noise
shall ensure that x? shall be a sum of n, normalized Gaussians.
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2 AS
P(filGy, C) = exp[— X?] * exp[— 7]
1
= exp[— E(Xz + AS)] = exp[—M(fk)]’
(14)
where
1
M(fy) = 5()(2 + AS(f1, A)). (15)

If we wish to minimize y?and maximize S, then A should
be a negative number. To solve any constrained optimiza-
tion problem, though it is common to use the formalism of
Lagrange multipliers, it is not necessary. If one does use
the formalism of Lagrange multiplier, the value of regu-
larization parameter is also somehow to be determined and
can not be arbitrarily set (refer to [26] to see how this is
done for a quadratic form of regularization function, which
leads to a linear problem). However, the algorithm that we
shall use, is s.t. it does not cast the problem in terms of
Lagrange multiplier (see Sec. 3.6 of [21]), and hence we
directly solve the constrained optimization problem with-
out using the regularization parameter explicitly.

Maximum entropy method is a particular (nonlinear)
inversion method (for details see [22—-24]). Here, the regu-
larization function S(f;, A) is nonquadratic so that the
equations to be dealt with, to solve the optimization prob-
lem, shall turn out to be nonlinear. Without such a maxi-
mum entropy constraint, the inversion problem is ill posed
(since the data can be satisfied by an infinity of primordial
power spectra). The condition that the entropy be a maxi-
mum selects one among these (see Appendix A detail).
There exist, in the literature, various arguments justifying
the use of MEM over other ways of inversion (often using
arguments from information theory4). At this stage, we
treat it as just another nonlinear version of the general
regularization scheme.

Using prior in the form of a regularization function
makes it possible to incorporate features which we expect
from our reconstructed sPPS. For example, Planck team
has used a regularization function which penalizes any
sPPS which have curvature and power in the modes which
are not measured, i.e., k < k.;, and k > k., [20]. In our
case, we use entropy as our regularization function which
also prefer a sPPS without features (having maximum
entropy) as compared to a sPPS with features.

Our method differs from the one presented in [18§]
because they use a gradient based (smoothing) quadratic

*It is often argued that while the maximum likelihood method
selects the spectrum that has the largest probability of reproduc-
ing the data, the maximum entropy method, instead, selects the
positive spectrum to which is associated the largest number of
ways of reproducing the data, i.e., the one that maximizes the
information-theory definition of the entropy of the spectrum
subject to the given constraints.

PHYSICAL REVIEW D 88, 023522 (2013)

regularization function which leads to a linear problem.
Also, we assumed the errors on Cys to be Gaussian, the
authors of [18] correct for the non-Gaussian nature of
errors on Cys at low € values.

III. THE CAMBRIDGE MAXIMUM
ENTROPY ALGORITHM

So, the problem that we wish to solve involves a highly
under-determined system of linear equations. As was men-
tioned in the last section, one way in which we can attempt
to solve this problem is to formulate it as a problem
involving the optimization of a nonquadratic function
(which will require solving a set of nonlinear equations)
subject to a constraint. Since the number of unknowns is so
large, we have to solve the corresponding constrained
nonlinear optimization problem in a very large dimen-
sional space. Also, we have other constraints that we
need to take care of, e.g., the components of f are positive
quantities (since f is a power spectrum), so the optimiza-
tion algorithm that we use must not cause the components
of f to become negative (this requirement rules out meth-
ods such as the steepest ascent). Similarly, since the the
objective function is quite different from a pure quadratic
form, methods such as conjugate gradient method are not
very useful.

Experience has shown that one of the strategies which
work (despite being complicated) is the following: instead
of searching for a minimum in a single search direction
(e.g., in steepest ascent method), one searches in a small-
(typically three-)dimensional subspace. This subspace is
spanned by vectors that are calculated at each point in such
a way as to avoid directions leading to negative values. The
algorithm that we use is based on the one developed by
Skilling and Bryan [21,27] and is sometimes referred to as
The Cambridge maximum entropy algorithm. It has been
extensively used in not only radio astronomy but also in
other fields. Here we quickly review this algorithm for the
sake of completeness.

A. Entropy and x>

The problem to be solved involves finding a set of f;

(k=1,2,..., ny) (with maximum entropy) from a data set
D, € =1,2,...,n,). For any f;, let
Fy =Y Gufe (16)
k

We shall use the following definition of entropy (the non-
linear regularization function),

s =-3a[m(}) 1] =-Za[m()]
a7

where A is a fixed number (sometimes called ‘the
default”) that sets the normalization of f. Notice that
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SO0) =0, S(fi=A)=n, A, S(f, =eA) =0. This
gives, (since A is fixed),

aS/of; =log(A/fy)  9°S/afiaf; = —8;;/f; (18)

telling us that 9,;5(0)=oc0, 9,S(fy =A)=0 and
9;S(fr = eA) = —1. It is easy to see that entropy surfaces
are strictly convex. Also, the expression for the various
derivatives of the entropy tell us that the solution f; = A is
the global maximum of entropy, this fact shall be important
later. The measure of misfit that we shall use (in order to
use the data) is the Chi-squared function

C(f) = x* = D.(Fe — D/ a%, (19)
€

from which we get the gradient of C,

aC/af; =Y G¢2(F, — Dy)/a%, (20)
€
and the Hessian,

9*Clafof; = ZG@-(%)G&-. (1)
¢ O

For a linear experiment, the surfaces of constant chi-
squared are convex ellipsoids in N-dimensional space.
The largest acceptable value for x> at 99% C.L. is about
Cyim = ng +3.29./n,; (with n,; being the number of
observations), see [21]. As the above equations show,
quantities such as the gradient of C and Hessian of C can
be easily evaluated (though finding the Hessian of C is the
one of the most computationally expensive tasks since the
matrix Gy is 45 X 6200 and the Hessian of C shall be
6200 X 6200 matrix).

At every iteration, instead of searching for the maximum
of S and minimum of C along a line, we search in an
n-dimensional subspace of the parameter space. So,
instead of

Floe =i xe, (i=12...,n) (22

we shall have (with e, being n search directions)
Floom = 14 2. 3¢l (23)
n=1

Sufficiently near any point, every function can be approxi-
mated by a quadratic function (provided the higher-order
terms in the Taylor expansion can be ignored). So, within
the subspace we shall model the entropy and chi-squared by

S( f+ er) = s(x), 24)

C(f + er) = c(x), (25)

where s(x) and c(x) are quadratic,

PHYSICAL REVIEW D 88, 023522 (2013)

s(x) = s(0) + Zsﬂx/‘ - Zgwx“x”/Z, (26)
2 v

c(x) = ¢(0) + ZCMXM + zhwx“x”/l (27)
7 uv

which correspond to the first three terms in the Taylor series
expansion of S(f) and C(f). The first-order term in the
Taylor expansion of S is

)

N
-G
- (S )

w=1Ni=1

which tells us what s, should be. Similarly, c,, g,,, and
h,, can be found,

, 9C
cﬂzgeﬂa—f., (28)
o928
— _ i,
= Sedimng O
. 9%C
_ i ,J
hy,, = izjeﬂey YR (30)

Thus, if we know the basis vectors, we can find the quadratic
functions s(x) and c(x).

Obviously, the above definitions shall not be valid to
arbitrary distances from the point in question. The qua-
dratic models are reliable only in the vicinity of the current
f where cubic and higher powers can be neglected. Thus,
the step size at each iteration must be such that

16f1> = 1,2, (31)

for some /. We thus need to define the concept of distance
in this abstract space. Recall that this means we need to
define a metric,

ds? = g, df'df’, (32)
ij

Note that the metric g;; is different from the function g,,,
defined by Eq. (26). Experience (see [21]) has shown that
the following definition of distance works well,

_ 0y 33

8ij = i (33)
This needs to be compared with the expression for the
Hessian matrix of entropy (notice that g/ = fi§V). It is
straightforward to show that
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ds® = gudfidfi = g, x"x", (34)
ij my

while choosing 102 tobe 1/5 of 3 f works well (see [21]).
The algorithm works in the following way: at every itera-
tion, when we are at a point in the f space, one considers a
distance region such that the quadratic model is a good
approximation in that region. We now find a subspace and
within this subspace, we try to find the place where

(1) s(x) is maximum,

(2) ¢(x) equals some C,,, and,

(3) the distance of this new point from the old point is

smaller than /.

B. Construction of the subspace

So, how do we decide the basis vectors that span the
subspace? One of our aims is to find the maximum of
entropy on the surface of ellipsoid corresponding to x> =
Caim- So, naturally, the direction of the gradient of entropy
must be one of the basis vectors. Since the metric in the
space of interest is not Cartesian, there shall be a distinc-
tion between contravariant and covariant components of
vectors in the space. Since the ‘““position vector” of any
point is f?, a contravariant vector, gradient such as 5/d f*,
is going to be a covariant vector. So the first (contravariant)
basis vector is

| 0SS
=280 5= Iy (35)

J

The meaning of this direction is easy to understand by
recalling its equivalent in usual Cartesian space. In the
usual situation, (6T) -Aidr = dT (i.e., if we are at any
point, and we go in the direction 7 by a distance of dr,
the change in the value of the function is d7). It is obvious
from this expression that when 7 is parallel to the direction
of gradient, the change df is maximum. Thus, to maximize
the change in f, we shall move in the direction parallel to

VT so that

i T
n :Z‘”ﬁ' (36)
J

This equation should be compared with the definition of
the first basis vector, Eq. (35), and since the Kronecker
delta is the metric in a Cartesian space, the two equations
are equivalent. Thus, the first basis vector tells us the
direction in which the entropy change per unit distance is
maximum.

Similarly, another basis vector could be

(37)

since we wish to change the y? at every iteration so that
we eventually reach the y*> = Cj;,,, surface. If we find what
the two search directions (defined above) become after

PHYSICAL REVIEW D 88, 023522 (2013)

incrementing by x'e; + x%e,, the direction e, shall stay
within the subspace spanned by ¢, and e, but the direction
e, shall go out of the subspace (see [27]). This suggests that
we choose more basis vectors such as

el = [y elarC/afiaf, (38)
J

el = 1> e}a*C/afiaf’. (39)
J

Experience has shown that a family of three or four such
search directions gives quite a robust algorithm for solving
the problem. In our problem, we chose the third search
direction to be

P 92C e]_eé
“ﬁzwwﬁ'ﬂ’ 40

J

where the following equations define the lengths L, and L,
which are the gradient vectors

_;; 98 S\ _;; 0C aC\h
) B ) B

Our experience has shown that putting the factors of L and
L. in the definition of the third basis vector improves the
speed of convergence of the answer.

C. Optimization within the subspace

Once we have found the subspace (by finding the basis
vectors in the space of all fs), we proceed as follows: we
now wish to find the step, the coefficients x in Eq. (23). To
do this, we shall solve a corresponding constrained opti-
mization problem in the n dimensional subspace (as was
stated in the previous subsection, we worked with n = 3,
but we shall continue to explain the details for a general n).
Since the functions s(x) and c(x) are quadratic, the problem
in the subspace is much simpler: it is a simple problem of
quadratic programming (quadratic objective function with
quadratic constraint). The only additional complication is
that the quadratic model is not valid to arbitrary distances
from the original point, so we need to satisfy an additional
distance constraint.

Let us begin by recalling that both the matrices g and &
are real-symmetric. Also, the matrix g is positive-definite.
The is a result of the way we have defined the metric on the
space [see Eq. (33)],

Z (df:)Z _ Zgﬂ,,x'uxy > 0,
i f mv

ds? = Y gy df'df) =
ij
(42)

where in the last step we used Eq. (34). So, it is clear that
guv 18 a positive-definite matrix (which implies that all its
eigenvalues are positive). Thus if one of the eigenvalues of
8y 18 a small positive number, numerical errors can cause
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it to become negative. In our implementation of the algo-
rithm, we choose to ignore any directions which are
defined by eigenvalues which are too small. Additional
simplification occurs if we simultaneously diagonalize
the two matrices g and h.°

After simultaneous diagonalization, within the sub-
space, the quadratic model functions S and C are given by

~ 1
S(x) = so + Zs#xﬂ — EZxMZ, (43)
I “

~ 1
Clx) =Cy + Zcﬂx’M + EZ‘nyMz. (44)
n P

the quantities s, etc. are now defined in terms of the new
basis vectors (but the same old definitions). Since this
causes the function g, to become a Kronecker delta, the
distance constraint equation looks like

P=Yx2=l} (2013 f ©005Yf) @5
w

We chose the coefficient on the rhs to be 0.2 and we
verified that the actual value of this number is unimportant.
Typically, the function C is such that all its eigenvalues are
(also) positive, then, the minimum value of the function C
in the subspace (where the above definitions work) is

~ 1 C?
Cmin = CO Y _M- (46)
2%yﬂ

Thus, no matter what the global aim C,, is, at a given
iteration, within the subspace, we can not get to any values
below C,,. In fact, even trying to achieve C,y, is not a
great idea since in that case we shall not use any informa-
tion about S.

The real challenge in the subspace is to satisfy the
distance constraint. Many different elaborate tricks have
been mentioned in the literature to do this. We choose to
not worry about getting a quick answer, hence we do the
following: in order to ensure that the distance constraint
always gets satisfied (i.e., we do not go too far from the
present location in just one step), we shall choose to have a

SSimultaneous diagonalization Theorem: If A and B are real-
symmetric matrices and B is positive-definite, then there exists
an invertible matrix P s.t. PTBP = and PTAP is diagonal.
The diagonal entries of A are the roots of the polynomial
det (xB — A) = 0. Notice that this is different from finding a
basis in which both are diagonal. Here, if B is chosen to be
identity matrix, then P is orthogonal and PTAP is the same as
P~ 'AP. This leads to the unique diagonal representation of the
matrix (with the eigenvalues as the diagonal values). Recall that
the eigenvalues of a matrix M are the solutions of the equation
det(M — AI) = 0. There exist stable numerical algorithms to
achieve this (see, e.g., p. 463 of [28]) which take in the two real-
symmetric matrices A and B and returns the (nonsingular) matrix
P and the diagonal matrix PTAP.

PHYSICAL REVIEW D 88, 023522 (2013)

Cyim Which is not too different from C, (the present value
of x?). We thus choose

Caim = max (aémin + (1 - a)CO’ Caim); (47)

with a chosen to be a small number (e.g., 0.01). This causes
the algorithm to take very small ““baby steps” towards the
answer. Numerical experience has shown that as far as our
problem is concerned, this is good enough. Of course, the
actual value of a or C,;,, chosen is not important as long as
the distance constraint gets satisfied.

The problem in the subspace is thus simplified to finding
the point x, such that the function S is maximum subject to
the constraint that C = C,;,, (and an additional constraint
that the distance constraint must get satisfied). The tech-
nique of Lagrange’s undetermined multiplier is useful
here: we wish to find the point on the curve C = Cyn
where § is maximum; to find the desired point, we consider
the set of points at which all the partial derivatives of the
function

O0=aS-C (48)

(for an undetermined «) vanish. For any «, such points are
given by

v, = %S Ca 49)

Yo T @

So, for every value of «, find the value of x, and then the
function C. We are after that value of @ which leads to
C = C,ym» 50 we look for a solution of the equation C(a) =
Cqim- The function C(a) is a monotonically increasing
function of a (see Fig. 2). Since the function C(a) —
C,im often happens to be a quickly changing function of
« (especially while it is changing its sign), the solution for
a needs to be found to a high tolerance level.

200

150

100

-100 |

0 02 04 06 08 1 12 14 16
o

-150

FIG. 2 (color online). The typical behavior of C(a) = C(a) —
C'aim (the curve) as we change «. The horizontal straight line
corresponds to C(a) = 0. The existence of a unique solution to
the equation C(a) = 0 is absolutely necessary for the algorithm
to work. Since C(a) changes very quickly as we change a, we
need to find the root of C(a) = 0 to a high accuracy.
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FIG. 3 (color online).

D. Stopping criterion

In solving the constrained optimization problem, one
fact which becomes important is the following: at the point
at which the constrained optimization problem gets solved,
the gradient vectors of the two functions become parallel.
Thus, if we find the unit vector in the direction of gradient
of entropy and in the direction of gradient of chi squared
function, the dot product of these two unit vectors (defined
using the entropy metric) must become negligible as we
head towards the point at which the constrained optimiza-
tion problem gets solved. The unit vectors in the directions
of gradients are (with L, and L, defined previously)

1 aS 1 oC
Ul =——, US=——. (50)
L, ox' 7 L. oxt
We thus expect the angle
6 = cos " (gVUUS), (51)

to become too small (compared to a unit radian) as the
algorithm proceeds (Fig. 3).

IV. RECOVERING PRIMORDIAL
POWER SPECTRUM

In this section, we shall (i) test the formalism presented
in the previous section by trying to recover a featureless as
well as feature-full sPPS from simulated noisy CMB data
and (ii) apply the algorithm to actual WMAP 7-year as well
as 9-year binned TT angular power spectrum [1] to recover
the Primordial Power Spectrum. Thus, to begin with, we
shall find out the radiation transfer function for the simplest
set of assumptions, inject a featureless sPPS and get noise-
free C/7 (which we shall refer to as theoretical Cs). Next
we shall add noise to these pure Cgs.

A. The radiative transport kernel

First, we need to set the values of the various cosmo-
logical parameters and get the corresponding radiation

PHYSICAL REVIEW D 88, 023522 (2013)

(b) 3.5

0 1 2 3 4 5
iteration number

(a) The typical evolution of entropy and y? as the algorithm advances and (b) the illustration of the fact that the
angle 0 (in radians) drops very quickly as the algorithm proceeds.

transfer function. This can be done by making use of the
codes such as CMBFAST [4], CAMB [5], or GTFAST [29]. The
results in this section are obtained from transfer function
found using the code gTfast which itself is based on
CMBFAST (version 4.0). It is important to notice that since
in this work we shall only use the 77T data, so, we only
calculate the temperature radiation transfer function. To
find out the transport kernel, we assume that the universe is
spatially flat and dark energy is a cosmological constant
(i.e., we have a spatially flat ACDM universe) and set the
values of the cosmological parameters to their WMAP
9-year values [1] (WMAP9 + bao + hO): the values of
various parameters to be fed into the code GTFAST are given
in Table I. We also assume that there are no tensor pertur-
bations to the metric. We use Peebles recombination
(rather than using RECFAST) and assume that the primordial
fluctuations are completely adiabatic. Finally ,we shall not
correct the transfer function for lensing of CMB, SZ effect
or other effects that cause secondary anisotropies of CMB.

TABLE I. The table shows the values of various parameters for
the run of GTFAST for which we shall display the various results.
It is important to note that the kernel G [defined by Eq. (7)] does
not change too much if we change the values of the parameters
slightly.

CMBfast Parameter Value
Imax 1500
ketamax 3000
Q, 0.0472
Q. 0.2408
Oy 0.712
Q, 0.0

H, 69.33 km/s/Mpc
Tcmb 2.72548 K
Yie 0.308
N, (massless) 3.04
N, (massive) 0.0

T 0.088
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This shall give us the radiation transfer function from
which we can easily evaluate the matrix Gy,. For the
case we are dealing with, the matrix G; shall have dimen-
sions 1500 X 6200. Finally, we would like to state that the
results one obtains and conclusions that one draws should
better not depend on the exact values of these parameters.

B. Recovering test spectra

We can now inject a test sPPS which is a power law with
Ag = 2.427 X 107°, ng = 0.971 (with ky = 0.002 Mpc ™!
and T, = 2.72548 X 10° uK) and get the corresponding
theoretical C;s, and add noise. The noise we add is domi-
nated by cosmic variance at low ¢ (less than 600) values
while for high € values, the noise is dominated by instru-
mental errors. Figure 4 shows the result of using the
algorithm described in the previous section to recover the
sPPS in the present case. The following points are worth
noting:

(1) To get the result shown in Fig. 4, we set the parame-
ter A in Eq. (17) to be 5.4 X 10*. As was stated, the
solution f; = A is the location of global maximum
of entropy in the f space. From Eq. (6), for any f,
the corresponding A}(k) can be found and so it is
clear that f, = A = 54000 corresponds to A%(k)
being (approx) 2 X 1078, Thus, this value of A
corresponds to the situation in which A%(k) =
2 X 1073 is the solution with the maximum value
of entropy.

(2) In an actual CMB experiment (such as WMAP) the
amount of noise (instrumental as well as that due to
cosmic variance) is not the same for all scales,

— T T T T T
£ =
|
Yo}

SR Hs M “11““”””‘

3 V "HM”M M

° ot 1
|
0
o L i
! b0l bl bl P PR T |
107° 1074 1073 0.01 0.1

log k[Mpc™']

FIG. 4 (color online). Recovery (solid curve) of an injected
featureless tilted red sPPS (the solid line) using simulated
unbinned CMB data. The artificially added noise is dominated
by cosmic variance for small (up to 600) € values and by
instrumental noise at larger € values. This result is obtained
when the parameter A in Eq. (17) is set to the value 5.4 X 10*.
This corresponds to assuming that the prior on Ag is 2 X 1078,

PHYSICAL REVIEW D 88, 023522 (2013)

which means that our data is not equally good for
all values of k. Figure 4 shows that at scales at which
the noise is large (very low and very high € values
which will correspond to very low and very high k
values), the recovered f(k) tends to approach the
value A, the recovery (at these scales) tends to be
poor. Thus, at scales at which the noise is too large
(or the kernel takes up negligible values), the recov-
ery depends on what is the prior information we
have about the solution. Thus the range of k values
in which we can recover the PPS is too restricted.

(3) Even at scales at which the noise is smaller (and at

which we hope to recover well), we can have wiggly
artificial features in the recovered PPS (in the form
of peaks and dips). In the recovered power spectrum
there could exist three kinds of features: (i) those
that are actually there in the injected PPS (which are
not there in the present case), (ii) those that are not
there in the PPS but got introduced by the algorithm
itself (these shall change as we change A), and
finally (iii) those that are artifacts of the added noise
(a particular realization of the noise shall have out-
liers, if we consider different realizations of the
noise, we shall get different recoveries).

(4) The scales at which we typically introduce fea-

tures in the sPPS are roughly 1073 MPc™! to
1072 MPc™'. We would like the recovery to be
good at these scales. If we have data till very large
value of €, and the noise at these large € values is
very low compared to the noise at €s corresponding
to the above scales, the algorithm shall ignore the
few data points with larger noise and try to only take
the data at the other scales seriously. Thus, if we
wish to recover better at these scales we must focus
on recovering the PPS using only the data from the €
values corresponding to these scales.

In practice, the process of masking the sky causes the
various Cgs to get correlated. The simplest situation in
which we can hope to recover the sPPS is the one in which
the the data points corresponding to different € values are
uncorrelated. This happens for the binned CMB data set
(which has data only for 45 € values). To make use of the
binned data, we also work with a binned kernel which is
defined by

Gavg _ E G(k 52
we— § 20 (52)

where N, is the number of € values in the bin (the binning
of the kernel in € space is done exactly the way the Cys are
binned in € space by WMAP team). By using this averaged
kernel and applying the algorithm to simulated binned data
(with the added noise equal to the noise for WMAP 7-year
binned data), we get the results shown in Fig. 5 (this time
we show the results for many A values). We again get an
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FIG. 5 (color online). Recovery of an injected featureless tilted
red sPPS (the solid line) using simulated binned data. The
different curves correspond to different values of A. The dashed
curve corresponds to A = 18000 which is equivalent to assum-
ing the prior on Ag to be 3.365 in units of 2 X 107°. The
corresponding values for other curves are: dotted curve (0.84),
dash-dot curve (0.42) and dash-dot-dot-dot (1.68).

answer which at scales at which the noise is large, tends to
the value of the default (i.e., A) while at scales at which the
noise is relatively low, the recovery tends to fluctuate
around the featureless injected signal. For a fixed value
of A, the recovery at scales at which the noise is relatively
lower shall be different if we consider different realizations
of the noise. This is illustrated in Fig. 6: here the recovery
shall be the same at scales with no data and shall be
different at scales with data. The key question is whether
we can recover features in the sPPS by this method. The

T T T T T T T T T T T T

-8

log Azg(k)

Lol ol Lol ol

107° 107* 107> 0.01 0.1
log k[Mpc™']

FIG. 6 (color online). The recovery at scales at which the data
has lesser noise is not given by f; = A but is dependent on the
specific realization of the noise added. The solid straight line is
the injected signal while the two curves are the recoveries for
two different realizations of the noise. The chosen prior on Ay is
0.42 (in units of 2 X 1077).
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FIG. 7 (color online). Recovery of spectrum with bumpy
features. The prior on Ag is set to 1.683 (in units of
2 X 107%). The dotted curve and the dash-dot curve are the
injected spectra while the solid and dashed curves are the
recoveries. Had we introduced a feature at scales where
the recovery goes back to the global maximum of entropy (A)
we could not have recovered it.

fact that this can be done is illustrated in Fig. 7: we just
introduce a bumpy feature between the scales 107> MPc ™!
to 1072 MPc ™! and vary its height and see that unless the
height of the bump is too small, the algorithm can recover
it. Of course if we introduce a feature at a scale at which the
data is not good or at which the kernel takes up negligible
values, the feature shall not be recovered. Moreover, it is
not surprising that the recovery is much better if the feature
is more prominent.

C. Actual binned CMB data

In this sub-section we apply the algorithm to actual
CMB data. We use WMAP 7-year and 9-year binned TT
data set and use it to recover the sPPS. The result for
WMAP 7-year data is shown in Fig. 8. The details of the
recovery of course depend on the chosen value of the
parameter A. In the present context, the value of A repre-
sents our a priori knowledge (without using any data) of
how much we think should be the scalar fluctuation in the
metric in the early universe.

It may appear that if the conclusion depends on such
a priori knowledge, we may not get anything worthwhile.
But the following fact is worth noting: it is seen that at
scales at which the noise is lesser, even though the recov-
ered P(k) depends on the value of A chosen, this depen-
dence is quite weak and quite predictable (as we increase A
alot or decrease it a lot, the recovery just “stretches’ in the
P(k) direction in the In P — In k plane).

One can keep on decreasing the value of A and see what
happens. In this context, the case of A = 1 is very interest-
ing since this corresponds to using another familiar defini-
tion of entropy, the recovery for this case is illustrated in
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FIG. 8 (color online). The result of applying the algorithm
to binned WMAP 7-year TT data. The solid verticle straight
line corresponds to the pivot scale of ky = 0.002 (Mpc)~!. The
solid line corresponds to the maximum likelihood sPPS that one
gets if one assumes the sPPS to be a power law. The curves
correspond to the following values of priors on Ag (in units of
2 X 107%): dashed (0.09), dash-dot (0.56), dotted (2.8), and dash-
dot-dot-dot (10).

Fig. 9. What is interesting is that if we choose A to be too
small, we begin to get an IR cutoff not very different from
the one reported in the literature previously (see [17]), but,
we also get an apparent UV cutoff. Moreover, such a small
value of A causes the artificial features to get stretched so
much that we may not consider the reconstruction to be
trustworthy in this case.

1. WMAP 9-year data

The corresponding recovery results for WMAP 9-year
data are shown in Fig. 10. The only difference between the
WMAP 7- and 9-year binned TT data is that the error bars

log Azf(k)

=3
10 0.01 0.1

log k[Mpc™']

FIG. 9 (color online). Choosing A = 1.0 causes the features to
get overly “stretched,“and we find apparent IR and UV cutoffs
in power.
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FIG. 10 (color online). The recovery of PPS using MEM with
WMAP 9-year data (the difference between the two datasets is
that the corresponding error bars are slightly smaller for WMAP
9-year data) for two values of A. The dotted curve with A =
3000 (corresponding prior on Ag = 5.61 in units of 2 X 107%) is
obtained using WMAP 9-year data while the dashed curve is for
WMAP 7. For the other value of A (corresponding prior on
Ag = 2.8 in units of 2 X 107?), dash-dot curve is for WMAP
9-year data while dash-dot-dot-dot curve is for WMAP 7-year
data. Notice that on very small and very large scales, the
improved data does not change the recovery.

are slightly smaller for WMAP 9-year data. We thus see
how the recovery shall change for smaller error bars.

2. A note on Planck data

The Planck Collaboration [2] also released its results
and made the data publicly available recently. The great
quality of data (with much smaller error bars, particularly
at high €s) ensures that for high ¢ values ({ > 50), the
conventional ACDM model fits the data very well i.e.,
power law PPS is a very good fit to the data at these ¢
values. The Planck Collaboration also reconstructed the
PPS from their data (see [20]) for these high ¢ values using
a regularization method which leads to a linear problem
(unlike ours). Though they report a small feature (at € =
1800), they do not rule out that this happens due to un-
known systematic effects. This lead to the conclusion that
there are no significant features in the PPS from the data at
large { values. For low € values (from € = 2 to 49), the
Planck Collaboration has provided the unbinned C;s. For
these low € values, the fact that the estimated Cys are
random variables with y? distribution shows up in the
form of asymmetric error bars. It may be very interesting
to use our deconvolution method to the low ¢ Planck data
and see if there are any indications for features in the PPS.
Since the noise at low €s can not be approximated as a
Gaussian random variable, to use the Planck data robustly,
we need to make a few changes in the formalism presented
here. We thus leave the analysis of Planck data to look for
features as a problem to be pursued in a future publication.
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V. SUMMARY AND DISCUSSION

In this work, we attempted to probe the amplitude and
shape of scalar primordial power spectrum (sPPS) using
the CMB data. We fixed the values of various cosmological
parameters (apart from the ones specifying the sPPS itself)
and formulated the problem as an inverse problem. To
solve the inverse problem, we use the maximum entropy
method which is a nonlinear regularization method. There
exist many possible ways to employ the maximum entropy
regularization, we use a particular definition of entropy and
a particular algorithm to solve the corresponding con-
strained nonlinear optimization problem in a very large
dimensional parameter space.

The way we have formulated the problem, there exists a
parameter (which we called A) whose value decides the
location of global maximum of entropy in the space of all
primordial power spectra. In the absence of any data, the
algorithm shall just send every initial guess to the global
maximum of entropy. Even in the presence of data, the
following is worth noting

(1) at scales where

(a) we have noisy data (thus, little or no informa-
tion), or
(b) the kernel (to be inverted) takes up negligible
values (again too large or too small k values),
the A}(k) recovered by MEM depends on the value of A

chosen (as A%(k) = A is the maximum entropy solution),

while at the scales where the data is good, we recover
something which has comparatively lesser dependence on
what A we choose.

(2) at scales at which the data is good, the A%(k) recov-

ered by MEM is consistent with a power law pri-
mordial power spectrum (with any possibly small
deviations which we can not say anything about at
this stage). This can be seen by comparing Fig. 8
with Figs. 5 and 7. While the existence of any small
deviations from power law behavior can not be
completely ruled out, this analysis reinforces our
belief that any such possible deviations must be
small.

This is by no means the last word on the existence of
features in sPPS; this is not even the last word on the use of
MEM for this purpose. The implementation of our algo-
rithm to this problem until now does not seem to give any
reason to believe that there are any serious deviations from
the power law. We would like to mention that this is not
completely unexpected, even in the light of existing papers
such as [17] because the error bars at scales at which the
features were recovered in those works are very large: the
maximum entropy method cannot claim any features at
scales where the error bars are so large.® This analysis

5This “rules out” (or at least renders them untrustworthy)
many models of inflation considered in the literature in recent
times.
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shows that at scales at which the CMB data is trustworthy,
the primordial power spectrum of scalar metric perturba-
tions is, to a very good approximation, a power law.

In the future, one can look at the following prospects.
We should be able to solve this problem of possible ex-
istence of features in sPPS without assuming the values of
other cosmological parameters (i.e., without formulating
this problem as a simple inversion problem). Even in the
present formulation, there may be ways of combining
results from different values of A to get a better recovery.
One may wish to use the actual WMAP likelihood (or
rather, the corresponding )(gff) as a measure of misfit,
but this is not easy in the way we have attempted to solve
the problem (we need to know the y? and its first two
derivatives). Also, we have lost a lot of information in the
process of binning the kernel and working with the binned,
uncorrelated data. We would like to use all that lost infor-
mation. Similarly, we have only used the 77 angular power
spectrum of CMB, we would also like to use the polariza-
tion spectra to probe the sPPS. We may also need to
postprocess the recovered sPPS to get more useful infor-
mation. Another interesting possibility worth exploring
is the connection of maximum entropy deconvolution
with other ways of deconvolution (e.g., Richard Lucy
deconvolution).
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APPENDIX: TESTING THE METHOD

The main text described the material necessary to em-
ploy the maximum entropy inversion in any circumstance.
The following points need to be noted (these are just tried
and tested facts about the algorithm, many of which are
illustrated here for the case of a toy problem shown in
Fig. 11, whose solution is given in Fig. 12):

(1) If we did not have any data available, the optimiza-
tion problem would have involved maximizing
entropy subject to no constraints. In such a scenario,
the solution we should get must be f; = A as that is
where the global maximum of entropy is.
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FIG. 11 (color online). A toy problem to test the algorithm.
The signal, which has a bump, gets completely smoothed after
the application of the kernel (chosen to be a Lorenzian profile), a
known amount of random noise is then added giving the final
data. Figure 12 illustrates the recovery with two distinct initial
guesses.

(ii) If the value of A is such that the y? of the global
maximum of entropy is smaller than Cy,, then
fi = A is itself the desired solution since “the
data are too noisy for any information to be ex-
tracted” (see the last paragraph of p. 113 of [21]).

(iii) It is not a surprise at all that choosing too small
value of A should lead to negative value for entropy
(the fact that depending upon the choice of A,
sometimes we could be at locations in the parame-
ter space with negative value of S has no impact on
the solution of the problem) (see Fig. 13).

@iv) In Eq. (48), a = oo corresponds to the uncon-
strained maximization of § irrespective of C. If
we are too close to the global maximum of entropy

éignal
1st initial guess -

6 | 2nd initial guess E
1st recovery
2nd recovery

power

0 10 20 30 40 50 60

bin
FIG. 12 (color online). An illustration of the fact that even
completely different initial guesses lead to the same final recov-
ery (done for the toy problem of Fig. 11). Notice that the location
of the recovered bump and its amplitude are not exactly right: the

quality of the recovery depends on many factors including the
form of the kernel matrix itself.
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FIG. 13 (color online). The straight line in this solution to
fr = A for various values of A. Changing the value of A shall
change the recovery because the point on the x> = constant
surface with maximum entropy changes in the process.

(f;i = A), the value of a required to solve the
constrained optimization problem in the subspace
[for O defined by Eq. (48)] shall become too large.
In this situation, it may be difficult to numerically
find any solution for «.

(v) As long as we do not stay too close to the global
maximum of entropy (so that numerical problems
such as those stated in the previous point above do
not turn up), the choice of the initial guess for
running the algorithm is immaterial. That is, all
the initial guesses shall lead to the same answer
(see Fig. 12).

(vi) All the above problems can be easily avoided if
we just choose a value of A s.t. the y?> of f; = A
configuration is much higher than the x? of initial
guess (which better be more than Cy;;,,). Notice that
this is not a requirement, just a trick. Also, this
does not help us in finding any unique preferable
value of A.

(vii) For many kernels the exact value of C,,, chosen
does not matter as far as the recovered f is con-
cerned, as long as the final value of # becomes
sufficiently small compared to a unit radian, all
recoveries with different final y? are almost the
same. The x? of signal (for a given realization)
shall just fluctuate around (roughly) n,, we have
tested that if Cypy, is set equal to Cgpy, the recov-
ery does not change. This happens to be true, e.g.,
for the case of CMB kernel, the case of our
interest.

(viii) The exact details of the shape of the final recov-
ered solution does depend upon the actual value of
A chosen: the x*> = Cy, surface can be thought of
as a closed ellipsoidal surface in the n, dimen-
sional f-space while as we change A, we define
the line f; = A as being the location of global
maximum of entropy for these different values
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of A. This will of course mean that as we change
A, the place where the entropy is maximum on the
x> = Cyn surface shall also change. Thus, as we
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