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Constraining theoretical models, which are represented by a set of parameters, using observational data

is an important exercise in cosmology. In Bayesian framework this is done by finding the probability

distribution of parameters which best fits to the observational data using sampling based methods like

Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain

problems in which the target function (likelihood) poses local maxima or have very high dimensionality.

Apart from this, there may be examples in which we are mainly interested to find the point in the

parameter space at which the probability distribution has the largest value. In this situation the problem of

parameter estimation becomes an optimization problem. In the present work we show that particle swarm

optimization (PSO), which is an artificial intelligence inspired population based search procedure, can

also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit� cold

dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess

value or any other property of the probability distribution of parameters like standard deviation, as is

common in MCMC. We also report the results of an exercise in which we consider a binned primordial

power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features

gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a

fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.

DOI: 10.1103/PhysRevD.85.123008 PACS numbers: 98.70.Vc

I. INTRODUCTION

In a typical CMB data analysis pipeline first the time
order data, obtained from an instrument like WMAP, is
reduced into a set of sky maps from which angular power
spectra are computed, and finally these spectra are reduced
into a set of cosmological parameters representing a model
usually using Bayesian analysis [1–9]. The exercise of
parameter estimation involves identifying a set of para-
meters which has the highest probability of giving the
observed data i.e., finding a point in the multidimensional
parameter space at which the likelihood function has the
greatest value. Currently this exercise is done using some
sampling based methods, like Markov chain Monte Carlo
(MCMC), in which the likelihood function is sampled at
discrete points, which are further used to compute various
statistics of parameters [3,6,10]. Apart from MCMC,
nonsampling based methods inspired from artificial intel-
ligence techniques, like artificial neural network, have also
been successfully applied in cosmological parameter esti-
mation from the CMB data [11].

In the present work we demonstrate the use of another
artificial intelligence inspired method, named particle
swarm optimization (PSO) [12–14], for cosmological pa-
rameter estimation using WMAP seven year data [15].
Being a stochastic method, PSO also has the interesting
feature that the computational cost for searching the global
maximum in the multidimensional space does not grow

exponentially with the dimensionality of the search space.
However, in this case also (like other stochastic methods)
the probability of convergence to the global maximum is
usually guaranteed only in the asymptotic limit. Based on a
very simple idea and having very few design parameters,
PSO is quite easy to program and can provide accurate
results very fast. As compared to artificial neural network
[11] all the calculations in PSO are exact, in the sense that
no extrapolation or interpolation is done at any stage i.e.,
fitness function is computed exactly at all points. It has
been found that PSO can outperform MCMC in certain
situations, in particular, when there are a large number of
local maxima present and/or the dimensionality of the
search space is very high [16].
It has been a common practice to consider a featureless

primordial power spectrum (PPS), characterized by two
parameters tilt (ns) and amplitude (As). In this case also
there is a degeneracy between the parameters of PPS and
other cosmological parameters (like �b), but the likeli-
hood surface remains fairly smooth and does not posses
much challenge for the MCMC method. There have been
studies which show that a PPS with features is a better fit to
the observational data as compared to the featureless power
law PPS [17–19]. In one of such studies [19] a PPS with
oscillations is considered and it is argued that due to addi-
tional degrees of freedom, as a result of features, the
MCMC approach is not very successful since there are a
large number of local maxima present in the search space
and the chains frequently tunnel from one local maximum
to another. In order to circumvent this problem it has been
recommended first to carry out the search space over a
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subset of parameters over a grid and then use full MCMC.
PSO can be quite useful in this type of problem due to its
better capabilities of handling higher-dimensional search
space and large number of local maxima.

Since the fitness function i.e., the function to be opti-
mized, can be computed concurrently on a parallel plat-
form for a large number of particles, PSO promises to give
accurate results very fast, if implemented efficiently.

Unlike MCMC which provides the full probability dis-
tribution from which marginalized values of parameters
and error bars can be computed, PSO just gives the location
of the best-fit point, called the Gbest (definition in next
section) and one needs to find some way to compute error
bars. In the present work we fit the effective chi square
(�2

eff ¼ �2 logL) by a multidimensional paraboloid

around the best-fit point and compute the error bars from
the fitting coefficients of that. On the basis of the errors we
set the range for the two-dimensional grids which we
consider for various combinations of parameters (keeping
all other parameters fixed to their best-fit values) and make
contour plots which show not only the extent to which the
likelihood surface is spread (errors) but also the correlation
between various parameters. These contour plots also con-
firm that PSO does find the global maximum of the like-
lihood function.

We observe that in most cases (which we have consid-
ered) not only does the Gbest approach towards the best-fit
point, the average location of particles also approaches
towards it, as PSO progresses. The average location of
PSO particles in the multidimensional search space can
be used to check the robustness of PSO. Since PSO is
designed mainly for finding the best-fit point, therefore
the sampling done by PSO particles is not designed to be
a fair representation of the likelihood surface.

The plan of the paper is as follows. In Sec. II we
discuss a simple implementation of the particle swarm
optimization in detail. In particular, we focus on the
dynamics of particles, setting-up initial conditions, bound-
ary conditions and the convergence criteria. We also
define all the design parameters and variables of PSO in
Sec. II. A very brief overview of parameter estimation in
Bayesian formalism is discussed in Sec. III. In place of
discussing the full prescription of maximum likelihood
(ML) estimation, we mainly focus on the computation of
error bars from covariance or Hessian matrix in this
section. We present our results of parameter estimation
using PSO for WMAP seven year data in Sec. IV. Apart
from giving the best-fit parameters and errors which we
get from our fitting exercise, we also present contour plots
for various combinations of the parameters. Along with
the best-fit parameter estimates which we get from PSO,
we give a comparison of the results obtained from PSO
and as are reported by WMAP team using MCMC. In
Sec. V we summarize the PSO and discuss its advantages
and disadvantages.

II. PARTICLE SWARM OPTIMIZATION

Formally proposed by James Kennedy and Russell
Eberhart in 1995 [12], PSO has been successfully tested
and applied in many engineering and artificial intelligence
problems [20–22]. Recently it has been applied in
astrophysical problems also [16,23,24]. In PSO, a set of
‘‘particles’’ driven by ‘‘cognition’’ and ‘‘social’’ factors
explore the multidimensional search space by carrying
out random walks, determined by a set of ‘‘design parame-
ters’’ which are given in Table I. The accuracy and per-
formance of the algorithm depends on the values of the
design parameters as well as the function to be optimized
i.e., the fitness function.
Particle swarm optimization is based on observations of

social dynamics, bird flocks, fish schools and other forms
of group behavior. Personal discoveries made by members
of the group and shared with everyone else can help
everyone to become more efficient in making new discov-
eries. Efficient personal search and communication with
other members of the group can lead to rapid success for
the group in search of some common goal i.e., food etc.
At present there exists many implementations of the

particle swarm optimization. Here we consider one of the
simplest forms [12] the elements of which are shared by
many other implementations. Before describing the work-
ing of our PSO implementation, it is useful to define some
of the key terms which are used to describe PSO.
(1) Particles.—The term particles in PSO is used for

‘‘computational agents’’ and has no relation with
any form of physical particles. PSO particles have
no mass and occupy no volume (however, they can
have weights called inertia weights which will be
discussed later). PSO particles are distinguished
from each other on the basis of their identification
numbers (ids) and have ‘‘positions’’ and ‘‘veloc-
ities’’. In our discussion we represent the position
and velocity of a particle with id i at step (‘‘time’’) t
by vector XiðtÞ and ViðtÞ, respectively.

(2) Fitness function.—The functionF ðXÞ to be used for
searching the global maximum is called the ‘‘fitness
function’’ or ‘‘optimization function.’’ In the present
case we use �2 logL or �2

eff as our optimization

function, where L is the CMB likelihood function.
(3) Pbest.—The maximum value of the optimization

function F iðtÞ for a particle i till the present step
(time Nt) is called its Pbesti

Pbest i ¼ MaxfF iðtÞ; t ¼ 0; 1; 2 . . . ; Ntg: (1)

The location of the Pbesti is represented by the
vector Pi

Pi ¼ XiðtÞ if F iðtÞ ¼ Pbesti: (2)

(4) Gbest.—The largest value of Pbest among all parti-
cles is called the Gbest. The value of Gbest changes
only when any of the particles finds a new position
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at which the value of the fitness function is larger
than any of the earlier values,

Gbest ¼ MaxfPbesti; i ¼ 0; 1; 2 . . . ; Npg: (3)

Here Np is the number of particles. The location of

the Gbest is given by the vector G,

G ¼ XiðtÞ if Pbesti ¼ Gbest: (4)

A. Dynamics of PSO particles

The following equation is used to update the positions of
the particles [12]:

Xiðtþ 1Þ ¼ XiðtÞ þ Viðtþ 1Þ; (5)

where velocity Viðtþ 1Þ for the particle i at step (tþ 1) is
computed in the following way:

Viðtþ 1Þ ¼ wViðtÞ þ c1�1fXiðtÞ � Pig þ c2�2fXiðtÞ �Gg:
(6)

Here c1 and c2 are called acceleration coefficients, w is
called the inertia weight and �1 and �2 are two uniform
random numbers in the range [0, 1]. The values of the
acceleration coefficients c1 and c2 decide the contribution
due to personal (cognitive) learning and social learning
respectively.

The first factor in the right-hand side of Eq. (6) moves
the particle along a straight line and the second and third
factors accelerate it towards the location of Pbest and
Gbest, respectively. Kennedy and Eberhart [12] use c1 ¼
c2 ¼ 2 to give it a mean of unity, so that the particle would
overfly the target about half of the time.

Although the Eq. (6) is most commonly used, the fol-
lowing version is also in use: [23].

Viðtþ1Þ¼KfViðtÞþC1�1ðXiðtÞ�PiÞþC2�2ðXiðtÞ�GÞg;
(7)

where K is called the constriction factor and is defined in
the following way:

K ¼ 2

j2��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p j
; (8)

where � ¼ C1 þ C2. Here the recommended values are
C1 ¼ C2 ¼ 2:05 which gives K ¼ 0:729. Equation (7) is
equivalent to Eq. (6) with c1 ¼ KC1, c2 ¼ KC2 and
w ¼ K. Since there are many implementations (with dif-
ferent values of design parameters or with some new
parameters) we have decided to work with PSO standard
2006 [25] which uses the following values of the design
parameters in Eq. (6)

w ¼ 1

2 logð2Þ ¼ 0:72 (9)

and

c1 ¼ c2 ¼ 0:5þ logð2Þ ¼ 1:193: (10)

Since we were able to get quite accurate results with the
values of design parameters suggested in PSO standard
2006[25], we decided to adopt these values in our imple-
mentation. We did try a few other values but could not find
any significant improvement.
In particle swarm optimization all the particles can

communicate with each other or the communication can
be restricted between only subsets of particles. The first
case is found to be more useful for intensive local search
and the second one for global search. In our implementa-
tion we let every particle share the information about its
Pbest with every other particle.

B. Maximum velocity

In order to stop particles leaving the search space we
need to limit the maximum velocity which particles can
acquire. This can be done by setting the maximum velocity
along various dimensions. It has been a common practice
to keep the maximum velocity proportional to the search
range,

ViðtÞ ¼
8<
:Vmax; if ViðtÞ>Vmax

�Vmax; if ViðtÞ<�Vmax;
(11)

where Vmax is also a design parameter. We use Vmax ¼
cvðXmax � XminÞ with cv ¼ 0:5 where ½Xmin; Xmax� is our
search range. This means that the biggest jump a particle
can make is half of the size of the search range.

C. Initial conditions

We assign random positions and velocities to particles in
the beginning,

Xiðt ¼ 0Þ ¼ Xmin þ �� ðXmax � XminÞ (12)

and

Viðt ¼ 0Þ ¼ �Vmax; (13)

where � is a uniform random number in the range ½0–1�.
Apart from the above initial conditions the ‘‘particles on a
grid’’ initial condition can also be used. From our trial runs
we have found that the final outcome i.e., the location of
the Gbest is not very sensitive to the initial condition.

D. Boundary condition

We use the ‘‘reflecting wall’’ boundary condition in
which a particle reverses its velocity component perpen-
dicular to the boundary when it tries to cross the boundary,

ViðtÞ ¼ �ViðtÞ (14)

and
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8<
:XiðtÞ ¼ Xmax when XiðtÞ> Xmax

XiðtÞ ¼ Xmin when XiðtÞ> Xmin:
(15)

E. Termination criteria

PSO particle trajectories are like ‘‘chains’’ in MCMC,
however, they are coupled to each other by second accel-
eration coefficient c2. In the limit of c2 ¼ 0 particle do not
exchange information but in that case PSO will become
meaningless. We have used Gelman-Rubin R statistics
[26,27] in order to find out when the exploration by PSO
particles should be stopped. In order to use Gelman-Rubin
statistics we use the mean of variance W within PSO
particle trajectories and variance of the mean B across
PSO trajectories.

At any time Nt the mean value the trajectory of a PSO
particle is

�X i ¼ XNt

j¼1

XiðtÞ; (16)

and the variance is

�2
i ¼

1

Nt � 1

XNt

j¼1

ðXiðtÞ � �XiÞ2; (17)

and the mean of variance is

W ¼ 1

Np

XNp

i¼1

�2
i : (18)

In order to compute variance of means we firstly compute
mean of means

Y ¼ XNp

i¼1

�Xi; (19)

and then

B ¼ Nt

Np � 1

XNp

i¼1

ð �Xi � YÞ2: (20)

The variance of stationary distribution can be written as
weighted sum of W and B,

Z ¼
�
1� 1

Nt

�
W þ 1

Nt

B: (21)

The potential scale reduction factor R̂ is given by

R̂ ¼
ffiffiffiffiffi
Z

W

s
: (22)

In general when the value of R̂ is as low as 1 we can assume
that the convergence has been obtained.

III. COSMOLOGICAL PARAMETER ESTIMATION

Cosmic microwave background temperature and
polarization anisotropies observed in the sky represent
the fluctuations in the baryon-photon fluid at the epoch of
last scattering i.e., when electrons were last scattered by
photons before they combined with protons and formed
hydrogen atoms, they contained a lot of information about
the cosmological parameters [7,28–30]. Because of the
Gaussian nature of the density fluctuations at the epoch
of last scattering (primordial fluctuations) as predicted by
inflationary models, the most important information about
the cosmological parameters is encoded in the angular two
point correlation function or power spectrum.
It is a common practice to represent the temperature

anisotropies in the CMB sky in spherical harmonic
expansion

�Tðn̂Þ
T0

¼ X
lm

almYlmðn̂Þ; (23)

where T0 is the average temperature i.e., the monopole
term. The angular two point correlation function is given
by

Cð�Þ ¼
�
�Tðn̂Þ
T0

�Tðn̂0Þ
T0

�
¼ X

l

2lþ 1

4�
ClPl cos�; (24)

where � is angle between directions n̂ and n̂0 in the sky. The
angular power spectrum Cl is defined as

Cl ¼ halma�lmi ¼ hjalmj2i: (25)

As mentioned above, the angular power spectrum Cl [or
angular two point correlation function Cð�Þ] depends on a
large number of cosmological parameters representing
various energy densities in the Universe, primordial fluc-
tuations, and the physical processes relevant in the early
Universe like reionization and recombination [28,31–33].
Many of the cosmological parameters affect the angular
power spectrum in the same way, i.e., have degeneracies.
However, it is possible to form a set of parameters, called
‘‘normal parameters’’ which affect the angular power
spectrum in a unique way [32,34]. The most common
cosmological parameters which have been used to fit ob-
servational Cl (we also use these) are density parameters
for cold dark matter (�ch

2), baryons (�bH
2), cosmologi-

cal constant (��), primordial scalar power spectrum index
(ns), and normalization (As), and reionization optical depth
(�). In our analysis we do not consider the ‘‘Hubble
parameter’’ h as a free parameter and compute its value
from other parameters for a spatially flat model

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bh

2 þ�ch
2

1���

s
: (26)

It is now a common practice to follow a ‘‘line of sight‘‘
integration approach for computing the angular power
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spectrum Cl for a set of cosmological parameters which is
a computationally expensive process. The publicly avail-
able code CAMB [35,36] is based on an earlier code named
CMBFAST [37] which can compute the angular power spec-

trum Cl on a shared memory platform in a short time.

A. Bayesian analysis

In the framework of Bayesian analysis the probability of
obtaining a set of parameters � which is consistent with a
data set D for a given prior I is given by

Pð�jD; IÞ ¼ PðDj�; IÞPð�jIÞ
PðDjIÞ : (27)

In the above equation Pð�jD; IÞ is the posterior probabil-
ity distribution, PðDj�; IÞ is the likelihood function
(which will be represented by L) and Pð�jIÞ is the prior.
The denominator PðDjIÞ called ‘‘evidence’’ is used for
the purpose of normalization and does not depend on the
parameters� so it can be ignored for the present purpose.

The likelihood function for a CMB experiment with Np

pixels is given by [7]

L ð�j�Þ ¼ 1

ð2�ÞNp=2

1

jCjNp=2
exp

�
� 1

2
�C�1�

�
; (28)

where � represents an estimator of the observed data
vector, having Np entries, and C is the joint covariance

matrix i.e., sum of the signal and noise covariance matrix

C ¼ Sþ N: (29)

The noise covariance matrix N can be approximated by
a diagonal matrix and the signal covariance matrix S is
given by [6]

Sij ¼
X
l

2lþ 1

4�
ClPlðcos�Þ; (30)

where � is the angle between the directions n̂i and n̂j
representing pixel i and pixel j respectively.

Exact likelihood computation by a brute force method is
computationally expensive since it involves inversion of a
Np � Np matrix which is a formidable task for an experi-

ment with very large number of pixels. Many approxima-
tions have been proposed which reduce the cost of
likelihood computation significantly [6,38,39].

In the present work we use the likelihood code provided
by the WMAP team for computing the likelihood function,
which takes the theoretical angular power spectrum com-
puted by CAMB, and the power spectrum estimated by the
WMAP experiment [40], as inputs.

The exercise of obtaining the best-fit cosmological pa-
rameters involves finding a point in the multidimensional
parameter space, at which the value of the likelihood
function L is maximum or �2 logL is minimum. Apart
from the best-fit values one is also interested in the error
bars on the estimated parameters which involves knowing

the shape of the likelihood function around the best-fit
values, for which we follow a fitting procedure as discussed
below.

B. Likelihood fitting

Close to the best-fit point we can approximate the
likelihood function Gaussian:

L ¼ L0 exp

�
�1

2�
TR�

�
(31)

where �i ¼ �i � �i;0 where �i;0 is the maximum likeli-

hood value of the parameter �i and R is the curvature
matrix. The covariance matrix C which is the inverse of
curvature matrix R gives an estimate of the standard errors
which maximum likelihood fitting can give [1].
The standard error ��i in parameter �i is given by:

��i ¼
ffiffiffiffiffiffi
Cii

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½R�1�ii

q
: (32)

We fit �2ðlogL� logL0Þ ¼ ��2
eff with a paraboloid

and compute the coefficients of fitting and identify those
with the elements of curvature matrix.

IV. RESULTS

We compute the best-fit cosmological parameters from
the WMAP seven year data for a six parameter model with
model parameters �bh

2, �ch
2, ��, ns, As and � using

PSO. Before presenting our results quantitatively, we con-
sider it useful to present a qualitative comparison of the
way parameters are estimated in the Markov chain
Monte Carlo methods and in particle swarm optimization.
In particular, we want to highlight the way parameter space
is explored and sampled in PSO and MCMC methods.

A. Markov chain and PSO exploration

The nature of exploration by a Markov chain and that by
a set of PSO particles is completely different. However,
there are some similarities also, for example, in both the
cases the random walk is governed by the optimization
function or the fitness function. In MCMC, the proposal
density is directly related to the function to be sampled. In
the case of MCMC exploration of a chain is completely
local, in the sense that whether a step will be selected or
rejected depends only on the values of the fitness function
at the current location and the next location. However, in
the case of PSO, particles always have some information
about the global maximum Gbest, which keeps changing.
In general the step size does not change in MCMC, how-
ever, in the case of PSO it rapidly falls as Gbest approaches
close to the global maximum.
Markov chains sample the fitness function in the

multidimensional parameter space using methods like
Metropolis-Hastings. The sampling algorithm ensures
that more points are sampled from regions in which the
fitness function has large values and less points from the
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regions in which it has small values. The values of best-fit
parameters are obtained after marginalization. In case of
PSO a set of particles explore the multidimensional space
guided by their personal i.e., Pbest and collective i.e.,
Gbest discoveries [see Eqs. (5) and (6)]. The progress of
a chain in MCMC and trajectory of a particle in PSO are
very different. Starting from any arbitrary point in the
multidimensional space both approach towards the region
where the probability of global maximum is high, however,
the way they approach is different.

Figure 1 shows a typical Markov chain and the trajectory
of a PSO particle. Since there were greater number of steps
in the Markov chain than in PSO, we have stretched the
x-axis for PSO trajectory by a factor of 5, i.e, there are five
Markov chain points for every PSO point for the same
range on the x-axis. From the figure it can be noticed that
the PSO particle reaches the global maximum by perform-
ing oscillatory motion with gradually decreasing ampli-
tude. However, in the case of Markov chain the progress is
very smooth.

One of the most common ways to present the results of a
parameter estimation exercise is to make two-dimensional
scatter or contour plots. In MCMC it is done by margin-
alizing the sampled function along all other dimensions
apart from the two for which we want scatter or contour
plots. For a general case, the location of the point at which
the likelihood function peaks may be different from the

average location computed on the basis of the one-
dimensional probability distribution obtained after margin-
alization. In the case of PSO also, we present the average
location of the particles, apart from finding the point at
which the likelihood function peaks.
The red and green points in Fig. 2 show the projection of

the positions of PSO particles and a set of sample points
from a Markov chain in a two-dimensional plane of the
parameter space, respectively. From the figure it can be
noticed that although the sampled points in both cases
cluster around the same point (Gbest in PSO) the distribu-
tion are completely different. In particular the points are
more symmetrically distributed around the best-fit value in
the Markov chain case as compared to that in PSO. Since
PSO results are always quoted in term of Gbest therefore
the distribution of points does not change the results in any
way. However, since in the present work we make explicit
use of the PSO particle distribution also (for fitting the
likelihood function for computing errors), it can create
some problem.

B. Best-fit cosmological parameters

In order to test the working of our PSO module
we considered a six-dimensional cosmological model
ð�bh

2;�ch
2;��; ns; As; �Þ (see Fig. 1 of [9]) and tried

to estimate its parameters from theWMAP seven year data.

FIG. 1 (color online). In this figure the red line shows a
Markov chain which has been obtained from a typical run of
COSMOMC and the green line shows the trajectory of a PSO

particle, along the same dimension i.e. �bh
2. The Markov chain

as well as a PSO trajectory can begin anywhere in the range and
progressively move towards the best-fit location. However, in the
case of PSO the particle approaches towards the best-fit location
(Gbest) in an oscillatory manor with successively decreasing
amplitude, which is not the case for a Markov chain since its step
size does not vary much. Only after a sufficient number of PSO
steps the particle positions and the Markov chain converge.
Since there are more number of points for the Markov chain
as compared to the PSO, we use x-scale such that we have five
Markov points for every PSO point.

FIG. 2 (color online). In this figure the red and the green points
show the distribution of the positions of PSO particles and
samples from a Markov chain, respectively, in the same plane.
From the figure it can be noticed that in the initial stage the
scatter of PSO particles is very large (see Fig. 1 also), however,
close to the convergence all particles get confined in a very
compact region. The distribution of the sample points in the case
of Markov chain is much more symmetric than in PSO. We
suspect that this is due to the different role played by the
stochastic variables (random numbers) in PSO as compared to
that in the Markov chains. The nonsymmetric distribution makes
PSO less favorable if we want to find the shape of the likelihood
close to the best-fit values (in order to report errors) in compari-
son to the Markov chain.
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The range over which we tried to optimize our fitness
function and the results are given in Table II.

In Fig. 3 we show the evolution of the fitness function
(� 2 logL) with PSO steps. We also show value for the
fitness function for WMAP seven year best-fit cosmologi-
cal parameters (dashed line). From the figure it can be
noticed that the value obtained by PSO finally converges
to the WMAP seven year value. Since the velocity with
which particles move toward Gbest is proportional to their
distance from Gbest, we get large jumps in the fitness
function in the beginning.

In PSO the values of the best-fit parameters, location in
the parameter space at which the likelihood function peaks,
is represented by Gbest. For consistency and robustness we
not only give the location of the Gbest, we also give the
average location of the PSO particles. It is not a surprise
that as PSO progresses, the average position of PSO par-
ticles and the location of the best-fit point converge to
Gbest. In a case when there are local maxima also present,
some of the PSO particles may trap in these, but, the
average location of particles still follows Gbest. In Fig. 4
we show the location of Gbest and the average position of
the PSO particles in our six-dimensional search space at
different steps. Note that in our model h is not a fitting
parameter, we get its value from the flatness condition [see
Eq. (26)].

The black, red and blue lines in Fig. 5 show the best-fit
angular power spectrum obtained by MCMC analysis,
from PSO code and the binned power spectrum (with error
bars) provided by the WMAP team for the seven year data.
From the figure it is clear that the power spectrum which
we obtain from our PSO code closely follows other two
curves.

C. Error estimates

In order to compute error bars on the parameters esti-
mated using PSO, we fit (as discussed in Sec. III B) a six-
dimensional paraboloid to a subset of sampled points to

TABLE II. The first column in the above table shows the PSO fitting parameters and the second, third, fourth and fifth columns show
the search range, the location of Gbest, the average position of PSO particles and the error or standard deviation (which is computed by
fitting the sampled function) respectively. In the sixth and seventh columns we give the best fit (ML) and the average values of the
cosmological parameters derived fromWMAP seven years likelihood estimation respectively. In the last column we give the difference
between our best-fit parameters (PSO parameters) and WMAP team’s best-fit parameters (difference between ML and Gbest values).
From this table it is clear that roughly there is good agreement between the PSO best-fit parameters and WMAP team’s best-fit
parameters from the seven year data.

Cosmological parameters from PSO

PSO best fit WMAP best fit [9]

Variable Range

Gbest

(�2
eff ¼ 7469:73) Mean

Standard

Deviation

ML

(�2
eff ¼ 7486:57) Mean

Difference

(Gbest-ML)

�bh
2 (0.01,0.04) 0.022036 0.022030 0.000456 0.02227 0:022490:00056�0:00057 �0:000234ð�1:05%Þ

�ch
2 (0.01,0.20) 0.112313 0.112435 0.005276 0.1116 0:1120� 0:0056 0.000713 (0.63%)

�� (0.50,0.75) 0.721896 0.720353 0.029047 0.729 0:727þ0:030
�0:029 �0:007104ð�0:97%Þ

ns (0.50,1.50) 0.963512 0.963278 0.011730 0.966 0:967� 0:014 �0:002488ð�0:25%Þ
As=10

�9 (1.0,4.0) 2.448498 2.454202 0.106615 2.42 2:43� 0:11 0.028498(1.17%)

� (0.01,0.11) 0.08009 0.083930 0.012113 0.0865 0:088� 0:015 �0:00641ð�7:41%Þ

TABLE I. PSO design parameters.

Parameter Description Value

w Inertia weight 0.72

c1 Acceleration parameters (personal) 1.193

c1 Acceleration parameters (social) 1.193

cv ¼ Vmax=�X maximum velocity parameter 0.5

Np Number of particles 30

Nd Search dimensions 6

FIG. 3. The solid line in the above figure shows the change in
the fitness function �2 logL as PSO steps progress, and the
dashed line shows the value for the WMAP seven year data.
From this figure it can be noticed that in the beginning improve-
ment in the value of the fitness function is quite rapid, but after
some time it saturates, primarily because once the particles reach
close to the global maximum as given by the Gbest their
velocities drop.
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FIG. 4. In each panel of the above figure we show the location of the best-fit points (location of Gbest) and the average
location of PSO particles, by the solid and dot-dashed lines, respectively. We also show the best-fit values given by the
WMAP team by dashed lines. From the above figure it can be noticed that as PSO progresses the average location of PSO
particles and the location of the Gbest converge, which can be used as a robust check. For most cases the best-fit values
obtained by PSO match well with standard � cold dark matter (LCDM) model values, but there are some differences also (see
Table II).
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��2
eff ¼ �2 logL� ð�2 logL0Þ where L0 is the value of

the likelihood function or Gbest at the last PSO step,

��2
eff ¼ ½ ~��T½��½ ~��; (33)

where � ¼ ð�bh
2;�ch

2;��; ns; As; �Þ and [�] is a 6� 6
symmetric matrix with 21 independent coefficients.

The six-dimensional vector ~� is defined as

~� ¼ ���Gbest

�Gbest

: (34)

We used multiparameter fitting subroutine of GNU sci-
entific library for the fitting [41]. In order to limit our fitting
to a subset of points, we consider only those points which
are within a six-dimensional hypersphere of radius i.e.,

j~�ij< 0:1 where �i is a component of the vector ~�, and
��2

eff < 10.
After obtaining the fitting matrix [�] we invert it and

compute the covariance matrix ½C� ¼ ½���1 and compute
error for the parameter �i from it,

��i ¼
ffiffiffiffiffiffi
Cii

p � �i;Gbest: (35)

We present the error in various parameters in the fifth
column of Table II.

D. Two-dimensional contour plots

Fitting as we have done may not give a very good
estimate of the errors on parameters. The exact way to
figure out how the likelihood surface behaves around the
best-fit location, which is given by Gbest in our case is to
compute the likelihood function on a grid around the best-
fit point. Numerical computation over a multidimensional

grid is quite expensive and even for a moderate size grid of
24 we have to do 246 computations for a six parameter
cosmological model. In place of considering a multi-
dimensional grid we consider the NdðNd � 1Þ=2 two-
dimensional grid as is done by some other authors [34].
We fix the values of the four parameters out of six to their
best-fit values i.e., Gbest and draw the two-dimensional
grid over the other two parameters.
In Figs. 6 and 7 we show two-dimensional contour plots

for different pairs of cosmological parameters. The con-
tours from the innermost are for ��2

eff ¼ 2, 6, 8 and 10.

Note that the range for grids is selected from the rough
estimates of errors which we get from fitting. The range for
�ch

2 and �� is taken 2� and for others it is taken 3�
where � is the error obtained from the fitting.

E. PPS with power in bins

In order to demonstrate an interesting example in which
PSO can be useful, we consider a model in which the
primordial power spectrum has ‘‘binned’’ power in place
of being a power law. We consider the power in bins as free
parameters and that make our model higher dimensional.
Apart from having 20 free parameters, which gives power
in logarithmic bins we consider rest of the four parameters
�bh

2, �ch
2, �� and � also free. As is expected, a model

with more parameters better fits the observational data,
which in the present case is WMAP seven year data i.e.,
for a primordial power spectrum with binned power �2

eff is

lower by 7 as compared to the standard power law mode.
The best-fit primordial power spectrum and angular power
spectrum are shown in Figs. 8 and 9 respectively. Note that
the PPS with binned power gives better fit, particularly at
low l. We consider here the particular form of PPS not to
motivate any particular theoretical model but just to dem-
onstrate the method we use.

F. Computational performance

Computing the fitness function i.e., �2 logL, which is
the most expensive part in the parameter estimation pro-
cedure, involves two steps. In the first step the Cl’s are
computed for a set of cosmological parameters for which
we use the publicly available code CAMB [36] which em-
ploys OpenMP pragmas for doing computationally inten-
sive steps in parallel on multiprocessor shared memory
systems. In the second step the likelihood function is
computed from Cl’s and the observational data i.e.,
WMAP seven year data, for which we use the likelihood
code provided by the WMAP team. Since our PSO code
shares two main modules (Cl and likelihood computation)
with the publicly available code COSMOMC, the difference
in the performance is expected only due to the number of
times the fitness function is computed. Computationally a
typical PSO run gives very good convergence with 30 PSO
particles with 160 steps i.e., 4800 computations. We ran a
typical COSMOMC run with 24 chains and found that (from

FIG. 5 (color online). The red, black and blue lines in the above
figure represent the best-fit angular power spectrum recovered
from PSO, standard LCDM power spectrum and the binned power
spectrum of WMAP seven year data, respectively. Note that the
PSO best-fit angular power spectrum is very close to that provided
by the WMAP team. The small difference (see Table II) between
the PSO best-fit parameters and the WMAP best-fit parameters
leads to a difference of 7 in �2

eff (it is smaller by 7 for PSO).
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reading .LOG file for every chain) that CAMB was called
691200 times, which is more than 50 times the number of
CAMB calls made in our case (including the calls for

two-dimensional grids used for contours).
Here it is also important to mention that parallelizing our

code is very straightforward. We use OpenMP to compute
Cl for a point in the six-dimensional parameter space and

use MPI to distribute particles among different MPI nodes.
At every step, particles are distributed among MPI nodes
and after they return the value of the fitness function, the
master node computes Pbest and Gbest and updates the
positions and velocities of particles. We have tested our
code on a Linux cluster using 15 MPI nodes, where each
node has 2 AMD quad core Opetron 2.6 GHz processors.

FIG. 6 (color online). Panels in this figure show the two-dimensional contour plots for various pairs of the six cosmological parameters
�bh

2,�ch
2,��, ns,AS and �. We have considered a grid of size 24� 24 for our exercise considered the 3� region, (where� is the error

computed from the fitting) around the best-fit point. In the case when we do not have any idea about the � we can give any other trial
value also. The contours in the figure (from inside) are for ��2

eff ¼ 2, 4, 6, 8 and 10. Note that the contour plots not only give an idea

about the area around the best-fit region, they also clearly demonstrate correlation between various cosmological parameter.
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FIG. 7 (color online). Same as in Fig. 6 but for different combination of cosmological parameters.

FIG. 8 (color online). This figure shows how the binned pri-
mordial power spectrum (20 logarithmic bins over the k range)
changes as PSO progresses (line 1 is for the initial PPS and 6 is
for the final PPS). The lower and upper values of the power in
bins are represented by the dashed line. Starting with a power
law PPS we found that a power spectrum which has low power in
some bins and high in others fits better than a power law model.

FIG. 9 (color online). The red, black and blue lines in the
above figure represent the best-fit angular power spectrum re-
covered from PSO, standard LCDM power spectrum and the
binned power spectrum of WMAP seven year data, respectively.
Note that at low l the angular power spectrum with binned PPS
fits better as compared to the standard power law PPS to the
observed data (the improvement in ��2

eff is around 7).
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Within a node we use OpenMP for computing the angular
power spectrum using as many number of threads as the
number of cores are present. We have also ported our code
on a Cray CX1 system with six nodes, where each node has
2 Intel Xeon 2.67 Ghz 6 core processors. In a case when the
number of nodes can divide the number of PSO particles,
there is no difficulty with load balance. Since at every PSO
step a very small amount of data has to be communicated
among MPI nodes, we have found that MPIcollective com-
munications calls like ‘‘broadcast’’ and ‘‘gather’’ are much
more efficient than regular ‘‘send’’ and ‘‘receive’’ calls. In
the present run, the result of which are reported here, it
took roughly two and half hours for the standard PSO run
to finish on a Linux cluster with 10 nodes with each node
having 2 AMD quad core Opetron 2.6 GHz processors. The
convergence was found just after 159 steps with 30 PSO
particles.

It is not very straightforward to compare the perform-
ance of our PSO code and that of the commonly used code
COSMOMC mainly because:

(1) The convergence criteria in PSO is slightly different
than that in COSMOMC.

(2) The angular power spectrum Cl computation in
COSMOMC is optimized by selecting only a subset

of particles which change their value, i.e., fast-slow
parameters. There is no such operation in PSO.

(3) It is a common practice to ‘‘thin’’ chains in MCMC
which means that not all sampled points are used for
the final result that is not the case in PSO.

(4) Inputs for PSO and COSMOMC are different, in the
sense COSMOMC needs a guess covariance matrix,
widths of the final one-dimensional probability
distribution and a starting point, apart from the
search range. This is not the case in PSO in which
we only need to specify a reasonable search range.

In [6] four chains with each having 30 000 points are
needed for convergence, but in our typical run with six
parameter model we never need more than 8000–9000
computations. Here it is important to note that the conver-
gence in PSO also depend on value of design parameters.

V. DISCUSSION AND CONCLUSION

In the present work we have demonstrated the applica-
tion of PSO for cosmological parameter estimation from
CMB data, which we believe has not been done earlier in
any other study. Being a different method, PSO can be used
as an alternative technique for parameter estimation, par-
ticularly when one is mainly interested in the location of
the best-fit point. The main focus of our present work was
to demonstrate the method, in place of producing quanti-
tative results and comparing those with other methods, that
we leave for our future work. We have not only shown how
to compute the values of the best-fit parameters, but have
also proposed a method to quantify the error bars on the
estimated values.

Based on a very simple algorithm, PSO has many inter-
esting features some are as follows:
(1) PSO has very few design parameters, the values of

which can be easily fixed.
(2) By tuning the values of the design parameters, PSO

can be made more efficient for global or a local
search although it is more useful for a global search.

(3) In PSO no approximation or extrapolation is made at
any step (like in artificial neural network) and the
optimization function is computed exactly at every
point.

(4) As is claimed in other studies also PSO is very
efficient in searching for the global maximum
when dimensionality of the search space is very
high or there are a large number of local maxima
present. Adding extra search dimensions in PSO is
quite straightforward.

(5) PSO can be used for accelerated search of the global
maximum since it always has some idea about the
Gbest from the very beginning.

(6) In PSO we need to give only the search range as an
input and no other information (as is needed in
MCMC) about parameters, like covariance matrix,
width of the final one-dimensional probability dis-
tribution or starting point is needed. This can be very
useful for models about the parameters of which we
do not have much prior information.

(7) Since this method is also based on Bayesian formal-
ism so extra data sets can be easily incorporated in
this method also.

As a result of very high quality CMB data which has

already been provided by the WMAP satellite [40] and will

be provided by the Planck satellite [42], it has become an

interesting exercise to consider much more complex

models (with very high dimensionality than just six to

11-dimensional models). The main motivation behind con-

sidering such models has been to fit the ‘‘outliers’’ of the

WMAP data (all years). In one of such exercise, in place of

considering the primordial power spectrum just a power

law, power in various bins can be left open for the fitting,

which makes the dimensionality of the search space very

large and we have shown that PSO can be quite useful for

such problems.
In the present work we have demonstrated that particle

swarm optimization can also be used for cosmological
parameter estimation from CMB data sets. Apart from
discussing the technique in detail, we have also presented
our results for the standard six parameters cosmological
model. Along with giving the best-fit parameters for the
WMAP seven year data, we have also given some rough
estimates of the errors, and have shown two-dimensional
contour plots in order to make the treatment complete. We
have also shown an application of our method for a higher-
dimensional cosmological model in which the primordial
power spectrum has power in logarithmic bins as free
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parameters. The main aim of the present work was to
demonstrate a new method and present the results qualita-
tively. In the future we plan to present a detailed quantita-
tive analysis.
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