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Abstract. We revisit the scenario where inflation is preceded by a radiation era by con-
sidering that the inflaton too could have been in thermal equilibrium early in the radiation
era. Hence we take into account not only the effect of a pre-inflationary era on the inflaton
mode functions but also that of a frozen thermal distribution of inflaton quanta. We initially
discuss in detail the issues relevant to our scenario of a pre-inflationary radiation dominated
era and then obtain the scalar power spectrum for this scenario. We find that the power
spectrum is free from infrared divergences. We then use the WMAP and Planck data to
determine the constraints on the inflaton comoving ‘temperature’ and on the duration of
inflation. We find that the best fit value of the duration of inflation is less than 1 e-folding
more than what is required to solve cosmological problems, while only an upper bound on
the inflaton temperature can be obtained.
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1 Introduction

The inflationary paradigm [1–5] successfully explains not only the spatial flatness, isotropy
and homogeneity of our observed universe, but also the origin of the density fluctuations in
the early universe which give rise to the large scale structure we observe today. Inflation, a
period of quasi-exponential expansion of our universe, stretches (quantum) scalar fluctuations
beyond the horizon thereafter freezing their amplitudes. These fluctuations may then be
treated as classical, and are the source of the gravitational instabilities which later form the
large scale structure of the universe. Though the existing observational evidence seems to
support the inflationary paradigm, what happened before inflation is completely unknown.
Could inflation be preceded by a radiation dominated era?

The possible consequences of a pre-inflationary radiation era have been studied earlier.
It is well known in the literature [6–13] that the presence of a pre-inflationary radiation era,
where one has ‘just-enough’ inflation, lowers the quadrupole moment of the CMB temper-
ature anisotropy spectrum.1 Lack of power in the CMB quadrupole is in accordance with
observations like COBE [42], WMAP [43] and PLANCK [44] despite the issue of cosmic
variance [45]. The transition from a pre-inflationary radiation era to a quasi-exponential

1Other attempts to explain the low power at low CMB multipoles involve non-trivial topologies of the uni-
verse [14–22], bouncing cosmologies [23, 24], various inflationary scenarios (e.g. hybrid models of inflation [25],
multi-field inflation [26], inflation which takes place in two stages [27–29] just enough inflation [30, 31] which
could take place in modified gravity theories [32] or preceded by a fast roll phase [33]), etc. There have also
been attempts at providing various other explanations such as non-primordial causes [34–38] and those based
on systematic effects [39, 40] as well as attempts to relate this low power to other anomalies in the CMB (see
e.g. [41]).
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inflationary era, and its effect on the inflaton mode functions, has been studied (i) when
the transition is instantaneous [6–12] and (ii) when the transition is continuous [13]. The
first approach yields a ‘ringing-effect’ in the lower multipoles of the TT anisotropy power
spectrum due to the abrupt matching of wave functions at the transition boundary [6–12],
while the second method is devoid of any such effect due to a continuous transition between
these two phases [13]. The lowering of the CMB quadrupole moment is evident in both these
approaches to study a pre-inflationary radiation era. Alternatively, in ref. [46] the authors
considered a scenario where the inflaton itself could have been in thermal equilibrium at some
very early epoch possibly near the Planck era. The effect of this pre-inflationary dynamics
was incorporated by considering a thermal rather than a vacuum state for the inflaton, i.e.,
by setting 〈a†

k
ak′〉 = [exp(k/T ) − 1]−1δ3(k − k′), where a†

k
ak is the number operator for

the inflaton modes and T is the inflaton comoving temperature. In contrast to the studies
in refs. [6–13] this scenario led to an enhancement in power at low CMB multipoles cor-
responding to large angular scales. This suggests that there exist conflicting effects of a
pre-inflationary radiation era: while the modified mode functions of the inflaton field lower
the quadrupole moment, thermal initial conditions on the inflaton quanta tend to increase
the power for the same.

In this article, we consider both these effects simultaneously unlike in earlier works that
consider only one effect or the other. We find that the effects of the pre-inflationary era
are only effective observationally if inflation lasts for the bare minimum number of e-folds
required to solve the horizon and flatness problems. This is similar to the scenario when one
considers a vacuum state with modified mode functions for the inflaton [6–13] (indicating that
the effect of the thermal state is suppressed by the effect of the modified mode functions).
Such ‘just-enough’ inflationary scenarios can be advocated from the fact that a large amount
of inflation requires some fine-tunning [47, 48] and that string landscape models suffer from
the η−problem [49] which does not allow them to sustain longer inflation.

The seminal work of Ford and Parker [50] showed that a pre-inflationary era, radiation
or matter, can cure the infrared divergences which turn up in correlations of inflationary
observables. We regard this as another motivation to study the consequences of a pre-
inflationary radiation era in detail [7, 51, 52].

We begin in section 2 by discussing the assumptions and conditions we presume in our
analysis. In section 3, we evaluate the primordial power spectrum of scalar perturbations by
matching the inflaton mode functions in the inflationary era with those of the pre-inflationary
radiation era, and by including a thermal distribution for the inflaton. In section 4, we use
the WMAP and Planck data to determine the best-fit values or constraints on the duration
of inflation and on the comoving temperature of the inflaton thermal distribution. We then
conclude with a discussion of various issues in section 5.

2 Pre-inflationary radiation era

In this work we shall assume that before inflation began, the universe was described by a
spatially flat FRW spacetime with small perturbations and was dominated by a radiation
fluid whose equation of state was of the form p = ρ/3. At some epoch in the early universe,
semiclassical general relativity and quantum field theory would have become valid and the
calculations we shall present are applicable from this moment onwards. Below we discuss the
assumptions that are relevant to the scenario that we are considering.

– 2 –
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2.1 The little horizon problem

We presume an FRW metric associated with an isotropic and homogeneous universe prior to
inflation in our analysis of cosmological perturbations during the pre-inflationary radiation
dominated era. It requires a level of fine-tuning at the Planck epoch for this assumption
of isotropy and homogeneity to be valid from tPl to ti when inflation commences. The
inflationary scenario too requires gradient energy to be sub-dominant on the horizon scale at
the beginning of inflation.

If the Hubble parameter at the beginning of inflation is Hi and the scale factor at the
beginning of inflation is ai, then the physical size l1 of the scale corresponding to Hi at the
Planck time is

l1 =
H−1

i a(tPl)

ai
. (2.1)

If l2 is the physical size of the horizon at the Planck time, then l2 = 1/H(tPl), and

l1
l2

=
aPlHPl

aiHi
=

√

MPl

Hi
. (2.2)

So, assuming Hi ∼ 10−4MPl, where MPl is the reduced Planck mass, we need to assume that
at the Planck epoch, the universe was isotropic and homogeneous on a length scale which
is O(100) times larger than the Planck length for the FRW metric to be valid till ti. If the
energy scale of inflation or Hi is lower, one shall require even more fine-tuning at early times.

2.2 The little flatness problem

The dimensionless curvature density parameter is defined by ΩK = −K/(a2H2), where K
could be -1, 0 or +1. In our analysis below of perturbations in the pre-inflationary radiation
dominated universe we presume that ΩK is negligible. An upper bound on the curvature is
also required to ensure that the universe does not collapse before the onset of inflation (if
K = +1). Since ΩK increases in a decelerating universe, can we justify ignoring it? Let tPl
and ti be the Planck time and the epoch when inflation starts. Suppose the pre-inflationary
radiation era lasts from tPl to ti, what is the maximum value of ΩK at tPl if we want ΩK to
be ignorable before inflation?

In the pre-inflationary era Ωr + Ωφ + ΩK = 1, where Ωr,φ refer to the radiation and
inflaton field component of the energy density, and let us assume that we can ignore ΩK if it
is O(0.01), i.e., at the onset of inflation, we expect that Ωr ≈ Ωφ ≈ O(1) ≫ ΩK . Then, since
ΩK ∼ a−2 for a radiation dominated universe

ΩK(tPl) ≈ ΩK(ti)

(

Hi

MPl

)

, (2.3)

which, assuming Hi ∼ 10−4MPl, turns out to be 10−6. If the energy scale of inflation is lower,
the fine-tuning problem gets more serious.

2.3 Local thermodynamic equilibrium

The stress tensor can be evaluated for any collection of particles but when the distribution
function of the collection of particles is close to its form in thermodynamic equilibrium,
the fluid approximation is valid and the stress tensor takes the simple form we use in the
Friedmann equations in cosmology. In a pre-inflationary era, is the fluid approximation valid?

– 3 –
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Was there enough time before inflation so that enough collisions could have happened that
caused local thermodynamic equilibrium? That is, in the pre-inflationary era, how does the
mean free path compare with the Hubble distance?

If a marginal coupling g with a vertex with three external lines contributes to 2-2
scattering process which sets the equilibrium, then, assuming that the coupling g ≈ O(10−1/2)
(the typical value of the Standard Model gauge couplings at the Planck scale), the ratio

tcoll
tHubble

∼ T

g4MPl
, (2.4)

is smaller than unity only when the “temperature” is hundred times smaller than the Planck
mass which corresponds to H/MPl ∼ 10−4. If the Hubble parameter before inflation is much
smaller than this, pre-inflationary relativistic particles do get enough time to attain thermal
equilibrium and the fluid limit; if not, the fluid approximation is not valid.2

As an important aside, let us see what happens if the equilibrium is set by a gravitational
interaction. The leading gravitational interaction is a dimension five operator coupling a
graviton to, say, two scalars and is suppressed by the Planck mass

Lint ⊇ c
O5

MPl
, (2.5)

which implies σ(E) ∼ c4E2/M4
Pl for 2-2 scattering mediated by a graviton. Hence

tcoll
tHubble

∼ M3
Pl

T 3c4
, (2.6)

so that the mean collision time is smaller than the Hubble time only for super-Planckian
temperatures. Thus, gravity mediated interactions can cause thermal equilibrium at sub-
Planckian temperatures only if c > 1.

Further exploring the scenario where tcoll > tHubble in the pre-inflationary radiation era,
we could assume that somehow at the Planck time the universe was in local thermodynamic
equilibrium but soon went out of equilibrium. Then, the distribution function of the rela-
tivistic particles is frozen in the equilibrium form while the relativistic particles form a hot
decoupled relic radiation. Can the perturbations around the equilibrium distribution func-
tion be treated in the fluid approximation? Had the particles forming the pre-inflationary
stuff been non-relativistic (like CDM), the fluid approximation would still have been valid for
perturbations and we could have described them by just two variables: the density contrast
δ and the peculiar velocity v (see, e.g., section 4.5 of ref. [55]). But they are relativistic, and
so the fluid approximation does not hold good for the perturbations. In particular, the ideal
fluid approximation breaks down for them as they cause anisotropic stresses (see eq. 5.33 of
ref. [55]). Note that for photons and massless neutrinos at decoupling, the anisotropic stress
is small because at the epoch of decoupling, the universe was already matter dominated.

Below we assume that the scale of inflation is low enough that the radiation has sufficient
time to thermalise before inflation commences and so the fluid approximation is valid.

2However if we lower the energy scale of inflation the fine-tuning required to have a pre-inflationary radiation
dominated universe described by spatially flat FRW universe shall increase, unless the universe has a non-
trivial topology [53]. (Quantum creation of a universe with non-trivial topology has been considered in
ref. [54].)
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2.4 Small Φ

To evaluate the scalar primordial power spectrum, we need to find the evolution of the
comoving curvature perturbation R, which during inflation takes the form

R = Φ+
H

φ̇0
δφ , (2.7)

where Φ is the metric perturbation and the inflaton field φ(x, t) is decomposed into a “clas-
sical” part φ0(t) (which is its background value) and a quantum fluctuating part δφ(x, t) as

φ(x, t) = φ0(t) + δφ(x, t). (2.8)

For now we work in the conformal Newtonian gauge. During inflation, the metric pertur-
bation Φ is negligible as compared to δφ (see figure (6.8) and section 6.5.2 of ref. [55]) and
it becomes non-negligible only as inflation ends. Furthermore, for a radiation dominated
universe, [56]

Φk ∼
{

constant, for (super−Hubble),
sinx
x2 , for (sub−Hubble) ,

where x = kτ and τ is the conformal time. So we presume that Φk of the pre-inflationary
radiation era dies down. This may not be strictly true for modes that enter the horizon just
before inflation begins — for such modes we presume the super-Hubble value of Φk is small.
Then the contribution of any pre-inflationary Φk can be ignored during inflation. Given the
above, the scalar power spectrum during inflation is determined by the quantum fluctuations
of δφ only and this is the quantity whose evolution we follow in the next section. In section 3,
we shall work with a gauge invariant variable δϕgi which equals the field fluctuation in the
conformal Newtonian gauge and shall perform matching of this variable at the transition from
a radiation dominated universe to an inflaton dominated universe. We will find the power
spectrum of R from the power spectrum of δφgi. We shall also assume an instantaneous
transition from a pre-inflationary radiation era to an inflationary era.

2.5 Initial conditions for the mode functions

When we have a pre-inflationary radiation dominated era, at early enough times, modes that
are outside the horizon during the radiation era become subhorizon as time passes. The
modes of cosmological interest enter the horizon before the inflationary era commences. We
apply initial conditions corresponding to plane waves with a positive frequency for these
modes, and also argue below that this is justified for modes that enter the horizon at the
very end of the radiation dominated era.

2.6 Thermal initial state

If there is a pre-inflationary radiation dominated era, apart from the change in the inflaton
mode functions, the state of the inflaton quanta could also be modified due to thermal effects
as we now argue.

We may picture the energy density of the pre-inflationary universe as including con-
tributions from (i) a species of relativistic particles (which form a fluid with an equation of
state of the form p = ρ/3 with ρ falling as a−4), and (ii) a coherent scalar field φ whose
energy density does not dilute. Then, at some stage, the energy density of the radiation
falls below the energy density of the scalar field and the universe begins inflating. One can

– 5 –
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assume [46] that the quanta of the inflaton fluctuations δφ decouples from the rest of the
plasma at some time td before inflation begins. After decoupling, the quanta of δφ travel
along geodesics in the spacetime so that the distribution function f(t,x,p) is conserved (just
like for collisionless dark matter; also, notice that p is the physical momentum). Assuming
that the decoupling happens suddenly at a temperature Td, the frozen distribution function
is the equilibrium distribution function feq at the epoch of decoupling: fd = feq(td, pd),
where, pd is the physical momentum of the particle at the epoch of decoupling. Then, for the
essentially non-interacting gas of (nearly) massless inflatons, the distribution function after
decoupling is given by

f(t,x,p) =
1

exp
(

a(t)p(t)
a(td)T (td)

)

− 1
, (2.9)

which has the same form as the equilibrium mean occupation number for a relativistic species
with the temperature

T (t) =
T (td)a(td)

a(t)
, (2.10)

even though the species δφ has fallen out of equilibrium. Notice that, just like for any
decoupled species, this “temperature” falls strictly as a−1 unlike the temperature of a species
which is in equilibrium (for which the relation between T and a depends on the number of
relativistic degrees of freedom). Defining the comoving temperature T by T = a(t)T (t) =
T (td)a(td), the comoving temperature can be constrained [46], as explained below.

In this scenario, the modes of the quantum field δφ are not expected to be in a vacuum
state but in a thermal state. This causes the scalar Primordial Power Spectrum to become [46]

PR(k) = As

(

k

kP

)ns−1

coth

(

k

2T

)

, (2.11)

and T being the comoving temperature introduces a length scale in the power spectrum.
The observable k range is taken to be 100 Mpc−1 to 10−5 Mpc−1 and the presence of the
coth factor in the above equation increases the power in CMB anisotropies at large angular
scales. In order to not substantially affect the power spectrum over the observable k range,
one requires the denominator in the coth function to be smaller than the present Hubble
scale H0, this constrains the comoving temperature [46]

T ≤ 4.2H0 ≈ 10−3Mpc−1 . (2.12)

Let the mode k0 be such that k0 = a0H0 (i.e. it is crossing the Hubble radius today). If this
mode exited the Hubble radius during inflation at an epoch t∗, then T = T∗a∗, where, T∗ and
a∗ denote the physical temperature and scale factor at t = t∗ when the Hubble parameter
is H∗. Then, the above relation implies that T∗ ≤ 4.2H∗, using a∗H∗ = a0H0 (and setting
a0 = 1). At the onset of inflation ρr = ρφ where ρφ ≈ V (slow-roll approximation) and

ρr =
π2g∗
30 T 4

γ (g∗ is the number of relativistic species in the pre-inflationary plasma and Tγ is
the physical temperature of the pre-inflationary radiation at the epoch of onset of inflation).
Assuming the physical temperature of the inflaton at the onset of inflation Ti = Tγ ,3 we get

Ti =
(

30

π2g∗

)1/4

V 1/4 . (2.13)

3This assumption is valid when there is no entropy production between td and ti.
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The condition T∗ ≤ 4.2H∗ implies, using the fact that H∗ =
(

V 1/4

MPl

)

V 1/4,

T∗ ≪ V 1/4 . (2.14)

Eqs. (2.13) and (2.14) together imply that in order to not affect the CMB temperature
anisotropies at large angular scales, one needs more than the minimum amount of inflation
(determined by when the mode k0 left the Hubble radius during inflation) in such a sce-
nario [46]. (Moreover, the amount of power at low ℓ values in the temperature anisotropy
and B-mode polarization of CMB also increases if gravitons too were in thermal equilibrium
at the Planck era [57–59].)

While the constraint according to ref. [46] on the comoving temperature of the inflaton
quanta is T . 10−3Mpc−1, the detailed analysis of section 4 in the present work has improved
this constraint to T . 10−4Mpc−1.

3 Evolution of perturbations

Having set up the basic scenario in section 2, one now has to solve for the metric perturbations
which we present here in a gauge invariant form. We follow ref. [60] for our analysis. Con-
sidering only the scalar perturbations of the metric, the most general form of the perturbed
spatially flat metric in conformal coordinates takes the form

gµν ≡ g0µν + δgµν = a2(τ)

(

1 + 2A −∂iB
−∂iB − (1− 2ψ) δij − 2∂i∂jE

)

, (3.1)

As these scalar perturbations are not gauge invariant quantities, it is useful to construct
gauge invariant variables (known as Bardeen potentials) out of these metric perturbations as

Φ = A+H(B − E′) + (B − E′)′, (3.2)

Ψ = ψ −H(B − E′), (3.3)

where H = a′

a = aH and X ′ ≡ ∂X
∂τ . Absence of anisotropic stress in the stress-energy tensor

puts a constraint on these gauge invariant quantities yielding Φ = Ψ, irrespective of any
particular choice of gauge. This is the quantity Φ introduced in section 2.4.

The fluctuation δφ(x, t) in eq. (2.8) is not a gauge invariant quantity and a gauge
invariant perturbation of the inflaton field δϕgi(x, t) can be constructed with the metric
fluctuations as

δϕgi = δφ+ φ′0(B − E′). (3.4)

In this perturbed background the equation of motion of the gauge invariant inflaton pertur-
bation, taking into account Φ = Ψ, is

δϕgi′′ + 2aHδϕgi′ −∇2δϕgi + V,φφ a
2δϕgi = 4φ′0Φ

′ − 2V,φ a
2Φ . (3.5)

In momentum space, we have

δϕgi′′
k + 2Hδϕgi′

k + k2δϕgi
k + V,φφ a

2δϕgi
k = 4φ′0Φ

′
k − 2V,φ a

2Φk. (3.6)

Thermal effects can modify the equation of motion for the homogeneous and non-zero mo-
mentum modes by generating additional terms in the effective potential [61–64], even with the

– 7 –
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frozen thermal distribution of inflaton quanta. One expects a mass correction, for example,
∼ λT 2/a2 for a λφ4 potential. (Recall that T/a is the physicaltemperature.) We compare
this with k2/a2. For modes within the horizon at the beginning of inflation k ≥ aiHi and
k/ai ≥ Hi ∼ T 2

i /MPl >
√
λTi if λ is sufficiently small as we shall presume. Then for these

modes of interest one can ignore these thermal correction to the potential in the equations of
motion. Nevertheless one can treat the potential V above as including thermal corrections.

3.1 Subhorizon primordial perturbations in the pre-inflationary radiation era

The evolution of the scalar field perturbations in the pre-inflationary radiation era is governed
by eq. (3.6). From the discussion in section 2.4 we ignore the r.h.s. of eq. (3.6). For a radiation

dominated universe, a = a1

(

t
t1

)1/2
and so the scale factor in terms of conformal time is

a =

[

τ + τ1 −
2t1
a1

]

a21
2t1

. (3.7)

If we now set τ1 to 2t1
a1

and choose t1 to represent the epoch of transition from the pre-
inflationary radiation era to inflation, i.e. ti, then

a =
a2i
2ti
τ . (3.8)

We restrict ourselves to a model of inflation in which the second potential slow-roll parameter
ηV (defined to be M2

PlVφφ/V ) is negative as, for example, for a potential of the form V (φ) =
V0 −m2φ2/2. (This allows us to recast the equations below in a more convenient form for
solving. This assumption does not affect our results as mentioned in section 3.1.1.) One can
then write eq. (3.6) as

δϕgi′′
k + 2Hδϕgi′

k + (k2 − c̃2τ2)δϕgi
k = 0, (3.9)

where

c̃2 = −ηV
V

M2
Pl

a4i
4t2i

. (3.10)

Below we shall take c̃ to be positive. Redefining the field as χk = aδϕgi
k one gets

χ′′
k + (k2 − c̃2τ2)χk = 0. (3.11)

We rewrite the above equation as

d2χk

dz2
+

(

ν +
1

2
− 1

4
z2
)

χk = 0, (3.12)

where ν + 1
2 = −k2

2c̃ and z = i
√
2c̃ τ and considering ã = −(ν + 1

2) =
k2

2c̃ we get

d2χk

dz2
−
(

1

4
z2 + ã

)

χk = 0 , (3.13)
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(compare with, e.g., eq. (19.1.2) of ref. [65]). The even and odd solutions of the above
equation are given in eqs. (19.2.5) and (19.2.6) of ref. [65] which are as follows

χ1
k = 1 + ã

z2

2!
+

(

ã2 +
1

2

)

z4

4!
+

(

ã3 +
7

2
ã

)

z6

6!
+

(

ã4 + 11ã2 +
15

4

)

z8

8!

+

(

ã5 + 25ã3 +
211

4
ã

)

z10

10!
+ · · ·

χ2
k = z + ã

z3

3!
+

(

ã2 +
3

2

)

z5

5!
+

(

ã3 +
13

2
ã

)

z7

7!
+

(

ã4 + 17ã2 +
63

4

)

z9

9!

+

(

ã5 + 35ã3 +
531

4
ã

)

z11

11!
+ · · · (3.14)

Hence the asymptotic forms of the above two solutions with ã large are

χ1
k ≈ 1 + ã

z2

2!
+ ã2

z4

4!
+ ã3

z6

6!
+ ã4

z8

8!
+ ã5

z10

10!
+ · · · = cosh(

√
ãz)

χ2
k ≈ z + ã

z3

3!
+ ã2

z5

5!
+ ã3

z7

7!
+ ã4

z9

9!
+ ã5

z11

11!
+ · · · = 1√

ã
sinh(

√
ãz) (3.15)

If we now define v1 and v2 by

v1 = χ1
k +

√
ãχ2

k ≈ e
√
ãz = eikτ

v2 = χ1
k −

√
ãχ2

k ≈ e−
√
ãz = e−ikτ , (3.16)

the expression for χ(k) during the radiation era is

χk(τ) = c1(k)v1 + c2(k)v2, (3.17)

which in the sub-horizon limit becomes

χk(τ) ≈ c1(k)e
ikτ + c2(k)e

−ikτ . (3.18)

To obtain the Minkowski spacetime solutions in the sub-horizon limit, we choose c2(k) =
1√
2k

and c1(k) = 0 (for all k). Then, for sub-horizon modes

δϕgi
rad(k, τ) ≈

1

a(τ)
√
2k
e−ikτ (3.19)

3.1.1 Justification for large ã

To obtain the asymptotic expressions in eq. (3.15) we assumed that ã is large. Since ã = k2

2c̃ ,
this is equivalent to assuming that k4 ≫ 4c̃2, or

k4 ≫ 4|ηV |
V

M4
Pl

a4i
4t2i

M2
Pl . (3.20)

Since t = 1/(2H) for a radiation dominated universe, the above gives

k4 ≫ 4|ηV |
V

M4
Pl

a4iH
2
iM

2
Pl . (3.21)
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We need to consider modes for which k >∼ aiHi, i.e. modes that enter the horizon during the
pre-inflationary radiation era. For the smallest k = aiHi the above condition then gives

H2
i ≫ 4|ηV |

V

M2
Pl

. (3.22)

At the epoch of transition H2
i = V

3M2

Pl

, which implies that the condition for having large ã

is that

|ηV | ≪
1

12
. (3.23)

Thus, if the potential is sufficiently flat, considering ã to be large can be justified for k >∼ aiHi.
This analysis justifies the plane wave form of the mode functions at ti even for modes which
were just entering the horizon at the onset of inflation.

Arguments similar to the above can be used to show that for a potential with ηV of
either sign, k2 ≫ c̃τ2 in eq. (3.9) at τi for modes of interest if |ηV | ≪ 1

3 , thereby justifying
the plane wave form of the mode functions in the pre-inflationary era at ti.

3.2 Evolution of primordial perturbations during inflation

Using the background equation for the slow-rolling inflaton field, i.e. V,φ a
2 ≈ −2Hφ′0,

eq. (3.6) can be written as

δϕgi′′
k + 2Hδϕgi′

k + k2δϕgi
k + V,φφ a

2δϕgi
k = 4φ′0Φ

′
k + 4Hφ′0Φk . (3.24)

The conformal time in quasi-de Sitter space is τ = − 1
(1−ǫ)H , where the Hubble slow-roll

parameter ǫ ≡ − Ḣ
H2 = 4πG

φ′2
0

H2 . Now the 0 − ith component of the Einstein equation can be
written during inflation as

Φ′ +HΦ = 4πGφ′0δϕ
gi. (3.25)

Using this in the R.H.S. of eq. (3.24) yields

δϕgi′′
k + 2Hδϕgi′

k + k2δϕgi
k + V,φφ a

2δϕgi
k = 16πGφ′20 δϕ

gi
k . (3.26)

Now, we can relate the last two terms in the above equation to the slow-roll parameters.

The Hubble slow-roll parameter η ≡ − φ̈0

Hφ̇0

and the standard slow-roll parameters are ǫV ≡
M2

Pl

2

(

V ′

V

)2
and ηV = M2

Pl

(

V ′′

V

)

= 1
3
a2V,φφ
H2 . In the slow-roll regime we have ǫV ≈ ǫ and

ηV ≈ η + ǫ. Hence we can write the above equation as

δϕgi′′
k + 2Hδϕgi′

k + k2δϕgi
k + (3η − ǫ)H2δϕgi

k = 0. (3.27)

It is convenient to redefine the field as χk = aδϕgi
k , as we did before, whose Wronskian yields

χkχ
∗′
k − χ∗

kχ
′
k = i or χkχ̇

∗
k − χ∗

kχ̇k = i
a(t) . The equation of motion for χk during inflation is

χ′′
k +

[

k2 − a′′

a
+ (3η − ǫ)H2

]

χk = 0. (3.28)

In a quasi-de Sitter space a′′

a ≈ 1
τ2
(2 + 3ǫ) and H = − 1

τ(1−ǫ) . Thus in a quasi-de Sitter space
the above equation can be written as

χ′′
k +

[

k2 − 1

τ2
(2− 3η + 4ǫ)

]

χk = 0, (3.29)
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or as

χ′′
k +

[

k2 − 1

τ2

(

ν2χ − 1

4

)]

χk = 0, (3.30)

where ν2χ ≡ 9
4 − 3η + 4ǫ. The solution of the above equation can be written as

χk =
√
−τ

[

c̃1(k)H
(1)
νχ (−kτ) + c̃2(k)H

(2)
νχ (−kτ)

]

, (3.31)

where H
(1)
νχ and H

(2)
νχ are the Hankel functions of the first and second kind.

Thus during the inflationary era the mode functions of the gauge invariant inflaton
fluctuations have a solution

δϕgi
inf(k, τ) ≡ a(τ)−1χk = a(τ)−1

√
−τ

[

c̃1(k)H
(1)
νχ (−kτ) + c̃2(k)H

(2)
νχ (−kτ)

]

. (3.32)

(Had we ignored the R.H.S. of eq. (3.24) due to small Φk, we would have obtained ν2χ ≡
9
4 − 3η + 3ǫ.)

3.3 Mode function matching and the power spectrum

For a transition from a radiation dominated era to an inflationary era at t = ti the form of
the scale factor changes as

a(t) = ai(t/ti)
1/2, t ≤ ti (3.33)

a(t) = aie
Hi(t−ti)+

Ḣi
2
(t−ti)

2

, t > ti. (3.34)

Hi is the scale factor at the time of the transition. Hi = 1
2ti

. a and ȧ are continuous at
ti. We have seen in the previous two sub-sections that the evolution of the gauge invariant
inflaton fluctuations during the pre-inflationary radiation era and in the inflationary era is
given by eq. (3.19) and eq. (3.32). We define zR,I ≡ −kτ = k

(1−ǫR,I)aH
where ǫR,I are the

slow-roll parameter during the radiation and inflationary eras. ǫR = 2 while ǫI ≪ 1. τ in the
definition of zR above is consistent with eq. (3.8). z(k) is not continuous at the transition
(unlike in some earlier works such as refs. [8–12] thereby giving somewhat different final
expressions). Then

δϕgi
rad(k, t) = arad(t)

−1χrad(zR), t ≤ ti (3.35)

δϕgi
inf(k, t) = ainf(t)

−1 [C1(k)uinf(zI) + C2(k)u
∗
inf(zI)] , t > ti, (3.36)

where

χrad(zR) =
1√
2k
e−ikτ =

1√
2k
eizR , (3.37)

uinf(zI) =

√

πzI
4k

H(1)
νχ (zI), (3.38)

u∗inf(zI) =

√

πzI
4k

H(2)
νχ (zI), (3.39)

and C1 =
√

4
π c̃1 and C2 =

√

4
π c̃2. A subscript k for χrad(zR) and uinf(zI) is implicit. The

Wronskian of uinf(zI) gives |C1|2 − |C2|2 = 1. The task is to determine the coefficients C1(k)
and C2(k).
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We demand that the wavefunction of gauge invariant inflaton fluctuation and its time
derivative remain continuous at the time of the transition, i.e.

δϕgi
rad(ti) = δϕgi

inf(ti),

δϕ̇gi
rad(ti) = δϕ̇gi

inf(ti). (3.40)

Following eq. (3.35) and eq. (3.36) we get

δϕ̇gi
rad(ti) =

χ̇rad(ti)

a(ti)
− χrad(ti)

2tia(ti)
, (3.41)

δϕ̇gi
inf(ti) =

C1(k)u̇inf(ti) + C2(k)u̇
∗
inf(ti)

a(ti)
− C1(k)uinf(ti) + C2(k)u

∗
inf(ti)

2tia(ti)
. (3.42)

Using the matching conditions given in eq. (3.40) one gets

χrad|t=ti
= C1(k)uinf |t=ti + C2(k)u

∗
inf |t=ti , (3.43)

χ̇rad|t=ti
= C1(k)u̇inf |t=ti + C2(k)u̇

∗
inf |t=ti , (3.44)

where we have used eq. (3.43) to simplify expressions and get eq. (3.44). Alternatively we
could have matched aδϕgi and its derivative at the transition. Solving these two equations
simultaneously and using the Wronskian uinf u̇

∗
inf − u∗inf u̇inf =

i
a(t) (yielding |C1|2 − |C2|2 = 1)

one gets

C1(k) = ia(ti) (u
∗
inf χ̇rad − u̇∗infχrad)|t=ti

, (3.45)

C2(k) = ia(ti) (u̇infχrad − uinf χ̇rad)|t=ti
. (3.46)

Now to determine C1(k) and C2(k) we need χ̇rad, u̇inf and u̇
∗
inf at ti. To obtain expressions

for these three quantities we notice that ż = −k
a and the derivatives of the Hankel functions

are (eq. (5.3.5) and eq. (5.4.9) of ref. [66]):

d

dz
H(1,2)

ν (z) =
νH

(1,2)
ν (z)

z
−H

(1,2)
ν+1 (z), (3.47)

where ν is an arbitrary order. Using the above equations one gets

χ̇rad(zR) = − i

a

√

k

2
eizR , (3.48)

u̇inf(zI) =
1

a

√

πk

4zI

[

zIH
(1)
νχ+1(zI)−

(

νχ +
1

2

)

H(1)
νχ (zI)

]

, (3.49)

u̇∗inf(zI) =
1

a

√

πk

4zI

[

zIH
(2)
νχ+1(zI)−

(

νχ +
1

2

)

H(2)
νχ (zI)

]

. (3.50)

Thus the co-efficients are

C1(k) = ieizR
√

π

8zI

[(

νχ +
1

2
− izI

)

H(2)
νχ (zI)− zIH

(2)
νχ+1(zI)

]
∣

∣

∣

∣

ti

, (3.51)

C2(k) = −ieizR
√

π

8zI

[(

νχ +
1

2
− izI

)

H(1)
νχ (zI)− zIH

(1)
νχ+1(zI)

]
∣

∣

∣

∣

ti

. (3.52)
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To check that |C1|2 − |C2|2 = 1 we obtain

|C1(k)|2 − |C2(k)|2 = − iπzI
4

[

H(1)
νχ (zI)H

(2)
νχ+1(zI)−H(2)

νχ (zI)H
(1)
νχ+1(zI)

]
∣

∣

∣

ti
(3.53)

Now using the relation in eq. (9.1.17) of ref. [67]),

H
(1)
ν+1(z)H

(2)
ν (z)−H

(2)
ν+1(z)H

(1)
ν (z) = − 4i

πz
(3.54)

in the above equation we get |C1|2 − |C2|2 = 1.
As was discussed in section 2.4, during inflation, the curvature perturbation R receives

most of its contribution from δφ and so we can use the above to find the primordial power
spectrum. When inflation is preceded by a radiation era the power spectrum for the inflaton
field fluctuations in the vacuum state is (using arguments similar to those in ref. [6])

Pδφ(k) = PBD
δφ |C1 − C2|2 , (3.55)

where PBD
δφ corresponds to the standard power spectrum in vacuum presuming Bunch-Davies

initial conditions on δϕgi
inf . Then

PR(k) = PBD
R |C1 − C2|2 = A

(

k

kP

)ns−1

|C1 − C2|2, (3.56)

where A and ns are the amplitude and scalar spectral index respectively of the spectrum
in a generic inflationary scenario, and kP is the pivot scale. Thus the modification due to
mode function-matching is a multiplicative factor of |C1 −C2|2 which we will calculate now.
We have

C1(k)− C2(k) = ieizR
√

π

2zI

[(

νχ +
1

2
− izI

)

Jνχ(zI)− zIJνχ+1(zI)

]
∣

∣

∣

∣

ti

, (3.57)

C∗
1 (k)− C∗

2 (k) = −ie−izR

√

π

2zI

[(

νχ +
1

2
+ izI

)

Jνχ(zI)− zIJνχ+1(zI)

]
∣

∣

∣

∣

ti

, (3.58)

which yields

|C1 − C2|2 =
π

2zI

[

z2I

(

J2
νχ(zI) + J2

νχ+1(zI)
)

− 2zI

(

νχ +
1

2

)

Jνχ(zI)Jνχ+1(zI)

+

(

νχ +
1

2

)2

J2
νχ(zI)

]
∣

∣

∣

∣

∣

ti

. (3.59)

We need to evaluate zI(k, ti) to determine the above factor. We know that

zI(k, ti) =
k

(1− ǫI)aiHi
. (3.60)

For the mode corresponding to the horizon size at the onset of inflation we have ki = aiHi.
For the largest mode of cosmological interest with wavenumber k0 = a0H0 = H0 (for a0 = 1),
which leaves N(k0) e-foldings before inflation ends, we have

N(k0)−N(ki) = ln(ki/k0) . (3.61)
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This gives

ki = k0e
−δN , (3.62)

where we have defined δN ≡ N(ki)−N(k0). Then

zI(k, ti) =
k

(1− ǫI)H0
eδN . (3.63)

Now if we also consider a thermal distribution of the scalar field quanta as in section 2.6
then the power spectrum will have an additional multiplicative factor and will be given by

PR(k) = A′
s

(

k

kP

)ns−1

|C1 − C2|2 coth
(

k

2T

)

, (3.64)

where T is the comoving temperature of the scalar field quanta. We can normalize the above
equation as

PR(k) = As

(

k

kP

)ns−1

|C1 − C2|2 coth
(

k

2T

)[

|C1(kP )− C2(kP )|2 coth
(

kP
2T

)]−1

,(3.65)

so that PR(kP ) = As. In figure (1) we plot the form of the Bunch-Davies power spectrum
and the modified power spectra of eqs. (3.56) and (3.65).

3.4 Infrared divergences

Before proceeding to the estimation of parameters for this model with a pre-inflationary
radiation era, let us see whether the modified power spectrum is free of infrared divergences
or not. The two-point correlation function G at coincident points is proportional to the power
spectrum as

G ∝
∫

dk

k
PR. (3.66)

For a generic inflationary scenario with no pre-inflationary era one has

PR = As(k/kP )
ns−1, (3.67)

with ns − 1 = 2ηV − 6ǫV . This spectrum diverges when k → 0. But in a scenario where the
inflation is preceded by a radiation era, the mode-matching at the boundary brings up the
multiplicative factor given in eq. (3.59). In the small k limit this factor will go as ∝ k2νχ−1.
Now we have νχ ≈ 3/2. Thus, in such a case the correlation function will be

G ∝
∫

dk k1+2ηV −6ǫV (3.68)

which converges at k → 0 (Note that the dependence of k in such a case matches with [7]).
Also, if we consider the thermal distribution of the inflaton then it will bring up an extra
factor of coth(2kT ) which as k → 0 will go as k−1. Thus in such a case the correlation
function will be

G ∝
∫

dk k2ηV −6ǫV , (3.69)

which is also IR convergent. Hence the power spectrum is infrared divergence free once we
take into account a radiation era preceding inflation, a fact well known in the literature (for
the standard power spectrum without the coth factor) [50].
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Figure 1. The effects of various factors in eq. (3.65) on the shape of the scalar Primordial Power
Spectrum. While the coth term enhances the power at low k values, the factor of |C1 − C2|2 due to
non-trivial mode dynamics lowers it. We have used δN = 0.081 and T = 1.286× 10−4 Mpc−1 (from
table 2). The Bunch-Davies power law Primordial Power Spectrum has also been shown for reference.

4 Parameter estimation

In the inflationary scenario of our interest, the Primordial Power Spectrum (PPS) has two
extra parameters δN , the number of e-foldings of inflation in excess of the standard minimum
(which is, for example, 60 e-foldings for GUT scale inflation) and the comoving inflaton
temperature T . We try to constrain the extra parameters of PPS from the WMAP nine year
and Planck data in this section using Markov Chain Monte Carlo (MCMC) analysis and for
this purpose use the publicly available code COSMOMC [68, 69].

COSMOMC uses a publicly available code CAMB [70] based a line of sight integration ap-
proach given in ref. [71] for computing the power spectra of CMB anisotropies for a set of
cosmological parameters. Apart from the two extra parameter δN and T , characterizing the
primordial power spectrum, we vary six standard parameters, namely, the physical densities
of baryons (Ωbh

2) and dark matter (Ωch
2), the dark energy density (ΩΛ) or θ as defined later,

the amplitude (AS) and spectral index (ns) of the primordial power spectrum (at pivot scale
kP = 0.05 Mpc−1) and the optical depth of reionization (τ) in our MCMC analysis.

We modify CAMB such that it can incorporate the two extra parameters for PPS which
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we have. In order to compute the likelihood from the power spectra of the CMB anisotropies
for WMAP nine year and Planck data we use the likelihood codes provided by WMAP [72]
and Planck team [73] respectively. For completeness a short description of the WMAP nine
year and Planck likelihood codes and data is given below.

The WMAP nine year likelihood code and the methodology of parameter estimation is
discussed in detail in ref. [74] and is not very different than what was outlined in ref. [75].
WMAP likelihood and nine year temperature and polarization data can be downloaded from
ref. [72]. The code computes likelihoods for the TT, EE, TE and BB angular power spectra
differently at low and high-l. The low-l (l ≤ 32) TT likelihood is computed from the power
spectrum estimated by Gibbs sampling and high-l (l > 32) TT likelihood is computed using
an optimal quadratic estimator. The WMAP likelihood code computes the low-l (l < 23)
polarization likelihood directly in the pixel space.

At present Planck has made only the temperature data publicly available which can be
used alone or with a combination of other CMB data sets to constrain theoretical models. The
likelihood code for Planck data can be downloaded from ref. [73] and a detailed description
of it can be found in ref. [76]. Since Planck has more frequency channels spread over a
wider range, higher angular resolution and better sensitivity as compared to WMAP it is
far better equipped to deal with systematics like foregrounds. Higher angular resolution and
better sensitivity of Planck allows us to use the angular power spectrum (temperature) up to
l = 2500, and a higher number of frequency channels makes it possible to model foregrounds
more accurately.

The Planck likelihood software (Clik) has a few different likelihoods modules, some of
which are CAMspec for computing the TT likelihood at high-l (up to l = 2500), commander for
computing the TT likelihood at low-l (from l = 0 to l = 49) and lowlike for computing the
low-l (l = 0 to l = 32) polarization likelihood from the TT,EE,BB and TE power spectra
(for polarization it uses WMAP nine year data).

The CAMspec module of the Planck likelihood code has 14 extra (nuisance) parame-
ters which are used for modeling systematics like foregrounds, asymmetric beams, etc. In
principle, these extra parameters also can be estimated from the same data set from which
the cosmological parameters are estimated. However, we do not do that and instead fix the
values of the CAMspec nuisance parameters to their values reported in refs. [76, 77], and vary
only the standard six standard parameters and the extra parameters of PPS.

For our analysis we take the sum of the physical masses of the light neutrinos (
∑

ν)
as 0.6 eV, the effective number of neutrinos (Neff) as 3.046, the Helium mass fraction (YHe)
as 0.24 and the width of reionization as 0.5. For the case of spatially flat background cos-
mological models, as we consider here, either the Hubble parameter at present (H0) or the
dark energy density is considered as a fitting parameter and the other is computed from
the flatness condition. In practice COSMOMC does not use H0 or ΩΛ as one of the six base
parameters and rather uses θ, the ratio of the size of the sound horizon at decoupling (rdec)
and the angular diameter distance at decoupling (DA), as one of the parameters.

The prior ranges which we use for parameter estimation are given in table 1. We found
the prior ranges for the two extra parameters δN and T (in Mpc−1) by considering a few
test cases. For the rest of the cosmological parameters we use the same prior ranges as used
in the literature [77].

As is clear from eq. (3.65), the primordial power spectrum depends on ǫI and νχ. We
consider two values of ǫI , namely, 0.001 and 0. The choice of ǫI = 0.001 with the presumed

range of As in table 1 effectively sets Hi/MP l ∼ 10−6, or V
1/4
i ∼ 1015GeV, while ǫI = 0
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S. No Parameter Prior Description
1 Ωbh

2 [0.005, 0.1] Baryon density today
2 Ωch

2 [0.001, 0.99] Cold dark matter density today
3 100θ [0.55, 10.0] ≈ 100× rdec/DA (CosmoMC)
4 ln[1010As] [2.7, 4.0] Primordial curvature perturbations at k0 = 0.05Mpc−1

5 ns [0.9, 1.1] Scalar spectrum power-law index at k0 = 0.05Mpc−1

6 τ [0.01, 0.8] Thomson scattering optical depth due to reionization
7 δN [−2.000, 2.0] Number of extra e-foldings
8 T [0.0000001, 0.0004] Temperature in Mpc−1

Table 1. Cosmological parameters and the prior ranges which we use in COSMOMC

corresponds to a very low energy scale of inflation, such as at the electroweak scale. These
choices are consistent with the upper bound in section 2.3 on Hi from the requirement of
thermalization before inflation so as to avail of the fluid approximation. νχ as defined in
section 3.2 depends on ǫ and η during inflation. Since the power law factor in eq. (3.65) is
determined by the slow-roll dynamics of the inflaton, we still have ns = 1 − 4ǫ + 2η during
inflation. For the above values of ǫI we vary ns and can obtain the corresponding values of η.

For the case of ǫI = 0.001, the extreme values of the prior range of ns according to
table 1, i.e. 0.9 and 1.1, lead to ηV lying between −0.047 and 0.053 which includes values
which are not too small as compared to the upper bound of 1/12 = 0.083 in eq. (3.23). But
the best fit value and 1σ range of ns (in table 2) correspond to values of ηV that satisfy the
upper bound. We have also checked that restricting the prior range of ns to [0.954, 1.034],
which corresponds to |ηV | < 0.02 (for ǫI = 0.001) does not change the results noticeably.
Similar remarks apply to the case when ǫI = 0.

In order to run COSMOMC for a theoretical model we not only need prior ranges we also
need a covariance matrix which is used in Markov Chain Monte Carlo sampling. Covariance
matrices are also provided with COSMOMC for a large number of theoretical models. However,
for a new model we must find the covariance matrix by running COSMOMC for a few test cases
and we have also done that.

In the diagonal panels of figure (2) we show (for the case ǫI = 0.001) the marginal
posterior probability distributions of the parameters T , δN , ns and As which characterize
the primordial power spectrum, and in the other panels we show the 68% and 95% confidence
regions. We do not show plots for rest of the cosmological parameters (which have expected
behavior) since we are primarily interested in the parameters of the primordial power spec-
trum. From the figure we can see that δN can be well constrained using the combined
WMAP nine year and Planck data, while we can put only an upper limit on T .

In table 2 we present a summary of the cosmological parameters for the standard power
law model and pre-inflationary model for the joint WMAP nine year and Planck data for the
two cases ǫI = 0.001 and ǫI = 0. Apart from showing the best fit values of the cosmological
parameters for the power law and the pre-inflationary model, we also give the 68% limit
for the parameters. As we noted above, though we can constrain δN , we can only give an
upper bound on T . There is not much change in the values of the standard cosmological
parameters and their errors when we replace the standard power law model with the pre-
inflationary model, while there is a slight improvement in the − log likelihood by 1.945.
However this improvement cannot be considered significant, in particular when the error
bars on the extra parameters δN and T are large. In figure (3), we plot the TT angular
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Figure 2. The diagonal panels in this figure show the one dimensional marginalized probability
distributions and the other panels show the 68% and 95% confidence regions of the parameters for
the WMAP nine year+ Planck data for the pre-inflationary model for ǫI = 0.001. Since the rest of
the cosmological parameters show the expected behavior we do not show plots for those.

power spectrum of CMB corresponding to the pre-inflationary model with ǫI = 0.001, and
the power spectrum for the standard power law case, using the best fit values of parameters
(and the upper bound on T ) from table 2, with the WMAP nine year and Planck datasets.
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Power Law Pre-Inflation (ǫI = 0.001) Pre-Inflation (ǫI = 0)

Parameter Best Fit 68% Limit Best Fit 68%Limit Best Fit 68 % Limit

Ωbh
2 0.02238 0.02235 ± 0.00020 0.02234 0.02235 ± 0.00019 0.02226 0.02235 ± 0.00019

Ωch
2 0.1159 0.1165 ± 0.0020 0.1167 0.1165 ± 0.0021 0.1171 0.1165 ± 0.0021

ΩΛ 0.708 0.704 ± 0.012 0.702 0.704 ± 0.012 0.700 0.704 ± 0.012

109As 2.186 2.186 ± 0.038 2.178 2.186 ± 0.040 2.163 2.187 ± 0.039

ns 0.962 0.962 ± 0.005 0.961 0.961 ± 0.005 0.960 0.962 ± 0.005

τ 0.089 0.089 ± 0.009 0.087 0.089 ± 0.009 0.083 0.089 ± 0.010

H0 69.04 68.74 ± 0.97 68.58 68.73 ± 0.96 68.40 68.75 ± 0.98

δN 0.081 0.160 ± 0.549 0.017 0.171 ± 0.552

T < 1.2867× 10−4
< 1.2782× 10−4

-logL 8691.8200 8689.8750 8689.9980

Table 2. Best fit cosmological parameters estimated from the WMAP nine year + Planck data for
the power law model, and the pre-inflationary model with ǫ = 0.001 and 0 with δN and T as extra
parameters. (For T we only obtain upper bounds.) Because of skewed non-gaussian distributions the
values in the 3rd, 5th and 7th columns are not centred about the best fit values.

Figure 3. We show the CTT

l
for Planck (pink filled triangles) and the WMAP nine year data (large

blue dots). The black and red curves respectively show the best-fit theoretical CTT

l
for the standard

power law model and the pre-inflationary model with ǫI = 0.001 using values from table 2. For the
latter curve, δN = 0.081 and T = 1.2867× 10−4 Mpc−1.
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5 Discussion and conclusions

Considering a radiation dominated era prior to inflation we have found the primordial power
spectrum of adiabatic scalar perturbations as given by eq. (3.65) and shown in figure 1. In
the previous literature where a pre-inflationary radiation era has been discussed, either a
modification of the mode functions (due to the presence of a prior radiation era) is con-
sidered [6–13], or, a thermal distribution of inflaton quanta (which carries a signature of
their prior thermal equilibrium) has been considered [46]. While the first tends to lower the
quadrupole moment of the CMB TT anisotropy spectrum, the latter enhances the power at
large angular scales. We have included in this study both these phenomena as a consistent
approach to determine the physics of the subsequent inflationary era. In figure 1 where we
plot the Primordial Power Spectrum with the |C1 − C2|2 and the coth term one sees that
the damping of the power on large scales due to |C1−C2|2 overwhelms the enhancement due
to the coth(k/(2T)] factor. (The ringing behaviour in the power spectrum seen in figure 1
is associated with the abrupt transition from the radiation to the inflationary era at ti —
though a and H are continuous at ti, ǫ is not. This behaviour is also seen in figure 1 of
ref. [6] and has been discussed in ref. [13]. In refs. [78, 79] particle creation associated with
the abrupt transition in ǫ between eras has been regulated by letting the Bogolyubov pa-
rameter βk → βke

−τ̄k for some very small but finite time duration τ̄ of the transition. If one
tries to consider ǫ varying over a short time scale during the transition between eras then it
will not be possible to obtain analytical solutions for the equations for the mode functions.)

Using WMAP nine year and Planck data, we find that the upper bound on the comoving
temperature of inflaton is given by T . 1.28× 10−4Mpc−1, and the best fit value of the min-
imum number of e-folds is 0.081 more than the minimum value required to solve the horizon
and flatness problems (see table 2 and figure 2). These results do not change significantly for
the smaller energy scale of inflation (ǫI = 0). We have thus improved the existing constraint
on the comoving temperature of the inflaton particles from T . 10−3Mpc−1 (according to
ref. [46]) to T . 10−4Mpc−1, i.e. by one order of magnitude.4

Our analysis shows that considering the effect of both the modified mode functions and
the temperature of the inflaton quanta on the primordial power spectrum marginally improves
the likelihood compared to the standard case though, as mentioned earlier, its significance
is diminished because of the large error bars for δN and T . We also depict the CMB power
spectrum in the presence of a pre-inflationary radiation era with the WMAP nine year and
Planck data in figure 3. It is evident from the plot that the best fit spectrum tends to lower
the quadrupole moment. However the decrease is not significant enough for us to claim that
the low l anomaly present in the Planck data can indicate a pre-inflationary radiation era.

One motivation of having a pre-inflationary radiation era is to get rid of the infrared
divergences which appear in the field theoretic treatment of perturbations in the inflationary
scenario. We have shown that the corrected power spectrum obtained in our analysis is
still infrared safe, even with the coth term, and hence curing infrared divergences with the
existence a pre-inflationary era holds good in our scenario as well. We have also discussed
the conditions under which the radiation dominated era prior to inflation can be treated in
the fluid approximation, as needed in the standard cosmological perturbation theory.

4 If we repeat the analysis of ref. [46], i.e. without modifications of the mode functions, and include
only one extra parameter T in COSMOMC then, with the newer WMAP9 + Planck data, we again find
T <

∼ 10−4Mpc−1. This will imply an increase of 2 in the minimum δN of 7 − 32 for GUT-electroweak scale
inflation obtained in ref. [46]. (δN is large in this analysis because there is no suppression of the coth factor
by the |C1 − C2|

2 factor.)
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