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ABSTRACT
We study the interplay of clumping at small scales with the collapse and relaxation of pertur-
bations at larger scales using N-body simulations. We quantify the effect of collapsed haloes
on perturbations at larger scales using the two-point correlation function, moments of counts
in cells and the mass function. The purpose of the study is twofold and the primary aim is
to quantify the role played by collapsed low-mass haloes in the evolution of perturbations
at large scales; this is in view of the strong effect seen when the large scale perturbation is
highly symmetric. Another reason for this study is to ask whether features or a cut-off in the
initial power spectrum can be detected using measures of clustering at scales that are already
non-linear. The final aim is to understand the effect of ignoring perturbations at scales smaller
than the resolution of N-body simulations. We find that these effects are ignorable if the scale
of non-linearity is larger than the average interparticle separation in simulations. Features in
the initial power spectrum can be detected easily if the scale of these features is in the linear
regime; detecting such features becomes difficult as the relevant scales become non-linear. We
find no effect of features in initial power spectra at small scales on the evolved power spectra
at large scales. We may conclude that, in general, the effect on the evolution of perturbations at
large scales of clumping on small scales is very small and may be ignored in most situations.
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1 IN T RO D U C T I O N

Large-scale structures like galaxies and clusters of galaxies are
believed to have formed by gravitational amplification of small per-
turbations (Peebles 1980; Shandarin & Zeldovich 1989; Peacock
1999; Bernardeau et al. 2002; Padmanabhan 2002). Much of the
matter in galaxies and clusters of galaxies is the so-called dark
matter (Trimble 1987; Spergel et al. 2003) that is believed to be
essentially non-interacting and non-relativistic. The dark matter re-
sponds mainly to gravitational forces and by virtue of larger density
than the ordinary or Baryonic matter, the assembly of matter into
haloes and the large-scale structure is driven by gravitational insta-
bility of initial perturbations. Galaxies are believed to form when
gas in highly overdense haloes cools and collapses to form stars in
large numbers (Hoyle 1953; Binney 1977; Rees & Ostriker 1977;
Silk 1977). Evolution of density perturbations due to gravitational
interaction in a cosmological setting is, therefore, the key process
for the study of large-scale structure and its evolution, and a very
important one in the formation and evolution of galaxies. The basic
equations for this are well known (Peebles 1974) and are easy to
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solve when the amplitude of perturbations is small. At this stage,
perturbations at each scale evolve independently on perturbations
at other scales, and mode coupling is subdominant. Once the ampli-
tude of perturbations at relevant scales becomes large, the coupling
with perturbations at other scales becomes important and cannot be
ignored. The equation for evolution of density perturbations cannot
be solved for generic perturbations in this regime, generally called
the non-linear regime. One can use dynamical approximations
for studying mildly non-linear perturbations (Zel’Dovich 1970;
Gurbatov, Saichev & Shandarin 1989; Matarrese et al. 1992;
Brainerd, Scherrer & Villumsen 1993; Bagla & Padmanabhan 1994;
Sahni & Coles 1995; Hui & Bertschinger 1996; Bernardeau et al.
2002). Statistical approximations and scaling relations can be used
if a limited amount of information is sufficient (Davis & Peebles
1977; Hamilton et al. 1991; Nityananda & Padmanabhan 1994; Jain,
Mo & White 1995; Padmanabhan 1996; Padmanabhan et al. 1996;
Peacock & Dodds 1996; Ma 1998; Kanekar 2000; Smith et al. 2003).
In general, however, we require cosmological N-body simulations
(Bertschinger 1998; Bagla 2005) to follow the detailed evolution of
the system.

In N-body simulations, we simulate a representative region of the
universe. This region is a large but finite volume. Effects of pertur-
bations at scales smaller than the mass resolution of the simulation,
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and of perturbations at scales larger than the box, are ignored.
Indeed, even perturbations at scales comparable to the box are
undersampled. It has been known for a long time that the per-
turbations at scales much larger than the simulation volume can
affect the results of N-body simulations (Gelb & Bertschinger
1994a,b; Tormen & Bertschinger 1996; Cole 1997; Bagla & Ray
2005; Sirko 2005; Bagla & Prasad 2006; Power & Knebe 2006;
Bagla, Prasad & Khandai 2008; Ryuichi et al. 2008). It is possi-
ble to quantify these effects and even estimate whether a given
simulation volume is large enough to be representative or not
(Bagla & Ray 2005; Bagla & Prasad 2006). It has been shown
that for gravitational dynamics in an expanding universe, pertur-
bations at small scales do not influence collapse of large-scale
perturbations in a significant manner (Peebles 1974, 1985; Little,
Weinberg & Park 1991; Bagla & Padmanabhan 1997b; Couch-
man & Peebles 1998) as far as the correlation function or power
spectrum at large scales is concerned. This has led to a belief that
ignoring perturbations at scales much smaller than the scales of
interest does not affect results of N-body simulations. Recently,
we have shown that if large-scale collapse is highly symmetric,
then the presence of perturbations at much smaller scales af-
fect the evolution of density perturbations at large scales (Bagla,
Prasad & Ray 2005). Here, we propose to study the effect of small
scales on the collapse of perturbations at large scales in a generic
situation.

Substructure can play an important role in the relaxation process.
It can induce mixing in phase space (Lynden-Bell 1967; Weinberg
2001) or change halo profiles by introducing transverse motions
(Peebles 1990; Subramanian 2000), and gravitational interactions
between small clumps can bring in an effective collisionality even
for a collisionless fluid (Ma & Bertschinger 2003; Ma & Boylan-
Kolchin 2004). Thus, it is important to understand the role played by
substructure in gravitational collapse and relaxation in the context
of an expanding background.

Whether the evolution of density perturbations is affected by
collapsed structure or not depends on the significance of mode
coupling between these scales. We summarize the known results
about mode coupling here.

(i) Large scales influence small scales in a significant manner.
If the initial conditions are modified by filtering out perturbations
at small scales, then mode coupling generates small-scale power.
If the scale of filtration is smaller than the scale of non-linearity at
the final epoch, then the non-linear power spectrum as well as the
appearance of large-scale structure is similar to the original case
(Peebles 1985; Little et al. 1991; Bagla & Padmanabhan 1997b;
Couchman & Peebles 1998).

(ii) Non-linear evolution drives every model towards a weak at-
tractor [P(k) � k−1] in the mildly non-linear regime (1 ≤ ξ̄ ≤ 200)
(Klypin & Melott 1992; Bagla & Padmanabhan 1997b).

(iii) In the absence of initial perturbations at large scales, mode
coupling generates power with [P(k) � k4] that grows very rapidly
at early times (Bagla & Padmanabhan 1997b). There are a number
of explanations for this feature, ranging from second-order per-
turbation theory to momentum and mass conserving motion of a
group of particles. The k4 tail can also be derived from the full
non-linear equation for density (Zel’Dovich 1965; Peebles 1974,
1980).

(iv) If we consider large-scale perturbations to be highly sym-
metric, e.g. planar, then small-scale fluctuations play a very impor-
tant role in the non-linear evolution of perturbations at large scales
(Bagla et al. 2005).

While the effect of large scales on small scales is known to be
significant, particularly if the larger scales are comparable to the
scale of non-linearity, the effect of small scales on larger scales is
known to be small in most situations. Even though this effect has
not been studied in detail, many tools have been developed that
exploit the presumed smallness of the influence of small scales on
large scales (Bond & Myers 1996; Monaco, Theuns & Taffoni 2002;
Monaco et al. 2002).

Considerable work has been done in recent years on the effects of
the pre-initial conditions used in N-body simulations (Bagla & Pad-
manabhan 1997a; Joyce et al. 2005; Gabrielli et al. 2006; Marcos
et al. 2006; Baertschiger et al. 2007a,b,c; Joyce & Marcos 2007a,b).
We use the term pre-initial conditions to refer to the distribution of
particles on which the initial density and velocity perturbations are
imprinted. The pre-initial conditions are expected to have no den-
sity perturbations or symmetry, but it can be shown that at least
one of these requirements must be relaxed in practice. This can
lead to growth of some modes in a manner different from that ex-
pected in the cosmological perturbation theory. Our work allows
us to estimate the effect such discrepant modes can have on the
non-linear evolution of clustering at these scales. Our work also
allows us to understand the effects that may arise if the primor-
dial power spectrum deviates strongly from a power law at small
scales.

The evolution of perturbations at small scales depends strongly
on the mass and force resolution. A high force resolution can lead
to better modelling of dense haloes, but gives rise to two-body
collisions (Splinter et al. 1998; Binney & Knebe 2002; Binney 2004;
Diemand et al. 2004; El-Zant 2006; Romeo et al. 2008). A high force
resolution without a corresponding mass resolution can also give
misleading results as we cannot probe shapes of collapsed objects
(Kuhlman, Melott & Shandarin 1996). In addition, discreteness and
stochasticity also limit our ability to measure physical quantities in
simulations, and these too need to be understood properly (Romeo
et al. 2008; Thiebaut et al. 2008). In all such cases, the errors in
modelling is large at small scales. It is important to understand
how such errors may spread to larger scales and affect physical
quantities.

2 MO D E L S

In order to understand the effects of small-scale perturbations on
large scales, we have simulated some models numerically. In these
models, we either suppress or add extra power at small scales, with
respect to our reference model (Model I). Some of the details of our
cosmological simulations are as follows.

(i) The TreePM code (Bagla 2002; Bagla & Ray 2003) for cos-
mological N-body simulations.

(ii) 2003 particles in a volume of 2003 cubical cells for each
simulation.

(iii) A softening length of 0.5 times the average interparticle
separation in order to suppress two-body collisions.

(iv) P(k) = Ak−1 as the reference model (Model I). This was
normalized so that σ 2(r = rnl , a = 1) = 1 where rnl = 12 grid
lengths.

(v) Einstein–de Sitter universe.1

1 Non-linear gravitational clustering is not likely to have a strong dependence
on the choice of cosmology. By restricting ourselves to the Einstein–de Sitter
universe, we have an additional check on simulations in the form of self-
similar evolution of clustering for the reference model.
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Figure 1. The left- and right-hand panels in this figure show the linearly extrapolated power spectrum �2(k) and variance σ 2(r) at the epoch a = 1. In both
the panels, Models I, II and III are represented by the solid, dashed and dot-dashed lines, respectively.

We studied the following modifications of the reference spectrum.

(i) Model II: Gaussian truncation of the reference power
spectrum at small scales, P(k) = Ak−1 exp[−k2/k2

c ]. We chose
kc = knyq/4, so that truncation is mainly at scales that are smaller
than the scale of non-linearity at late times. A is chosen to be the
same as for Model I.

(ii) Model III: a spike is added to the reference power spectrum,
P(k) = Ak−1 + αAk−1

c exp[−(k − kc)2/2σ 2
k ]. We chose same kc as in

Model II, σk = 2π/Lbox is the same as the fundamental wavenumber
and we took α = 4. A is chosen to be the same as for Model I.

Clearly, these models have additional or truncated power at small
scales as compared to the reference model, while large scales are the
same in all the models. The left-hand and right-hand panels in Fig. 1
show the linearly extrapolated power spectrum �2(k) which we start
within N-body simulations and the theoretical mass variance σ 2(r),
respectively, for the three models being considered at the last epoch,
i.e. a = 1. From both the panels of Fig. 1, we see that all the three
models have identical power at the scales much larger than the scale
at which we add or suppress the power, i.e. 2π/kc.

We choose to work with the Einstein–de Sitter universe as the
background, as effects of mode coupling are more important in the
non-linear regime and we do not expect the cosmological parame-
ters to influence the evolution of perturbations at these scales. The
specific choice of Einstein–de Sitter universe is useful as power-law
initial conditions, e.g. the reference model, are expected to evolve
in a self-similar manner, and this provides a useful check for errors
creeping in due to the effects of a finite box-size or other numerical
artefacts.

3 R ESULTS

Our goal is to understand the effects of variations in the initial
power spectrum at small scales on other scales. For this, we study
the three models at two representative epochs: one where the scale
of modification is linear and the second epoch when the scale of
non-linearity is larger than the scales where the power spectra differ
from each other. We refer to these epochs as an early epoch and

a late epoch. The scale of non-linearity in the reference model at
the early epoch is 4.8 grid lengths and the corresponding scale at
the late epoch is 12 grid lengths. The wavenumber kc corresponds
to eight grid lengths and becomes non-linear at an intermediate
epoch.

Fig. 2 shows the distribution of particles in a thin slice from
simulations of the three models. The left-hand column shows the
distribution at the early epoch whereas the right-hand column shows
the same slice at late times. The middle row shows the reference
model (Model I), the top row is for model with less power at small
scales (Model II) and the bottom row is for the model with excess
power at small scales (Model III). The large-scale distribution of
particles is similar in all the three models for both epochs, although
there are significant differences at small scales. Differences are
more prominent between Model II and the other models, whereas
the differences between Models I and III are less obvious. Also,
differences between the models diminish as we go from the early
epoch to the late epoch.

Fig. 3 compares the models in a more quantitative manner. We
have plotted the amplitude of clustering ξ̄ (r) as a function of r for
the three models at an early epoch (top-left frame) and at a later
epoch (top-right frame). The differences between the amplitude of
clustering are more pronounced at the early epoch, though even
here the differences are much smaller than those seen in Fig. 1
where the linearly extrapolated σ 2(r) has been plotted. At late times,
Models I and III have an indistinguishable ξ̄ (r), whereas Model II
has a slightly smaller amplitude of clustering at small scales when
compared with these two models. At very large r compared to the
scale of modification, all models have the same ξ̄ even at the early
epoch.

Second row in Fig. 3 shows S3 as a function of scale for the three
models. As before, the left-hand panel is for the early epoch and the
right-hand panel is for the late epoch. At large scales, larger than
the scale of modification (eight grid lengths), the three models agree
well. There are significant differences at small scales, particularly
at the early epoch. Model II has the highest skewness, whereas
Model III has the smallest skewness at small scales. This ranking
does not change with time, though the differences between models
decrease with further evolution of the system.
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Figure 2. The first, second and third rows in the figure show the slices for the Models II, I and III respectively, at an early (first column) and a later epoch
(second column). The early epoch is identified with an epoch when the scale at which we add or truncate power, i.e. 2π/kc , is linear in Model I and the later
epoch is identified with an epoch when the scale 2π/kc is non-linear in Model II.

The bottom row in Fig. 3 shows the number density of haloes as
a function of mass. Mass here is shown in units of mass of each
particle. Haloes were identified using the friends-of-friends (FOF)
algorithm with a linking length of 0.1. We chose this linking length
in order to avoid identifying smooth filaments in Model II as haloes.
Haloes with a minimum of 20 particles were considered for this plot.
We find that Model III has the largest number of haloes around the
scale of modification, whereas Model II has the least number of

haloes at this scale. Indeed, at the early epoch, Model II has a much
lower number of haloes at all mass scales when compared with
Models I and III. At late times, Model II continues to have fewer
small mass haloes though it almost matches the other two masses
at larger masses.

We find that the two-point correlation function does not retain
any information about differences in initial conditions after the scale
where such differences are present becomes sufficiently non-linear.
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Figure 3. The first, second and third rows in this figure show the average two-point correlation function ξ̄ , skewness S3 and comoving number density of
haloes N(M)dM, respectively, at an early (first column) and at a later epoch (second column). Different models in all the panels are represented by the same
line styles as in Fig. 1.

This is in agreement with results of the earlier studies (Peebles 1985;
Little et al. 1991; Klypin & Melott 1992; Bagla & Padmanabhan
1997b; Couchman & Peebles 1998).

Skewness is a slightly better indicator than the two-point correla-
tion function, in that it retains some information about the missing
power at small scales in Model II even after the cut-off scale be-
comes non-linear. It does not retain much information about the

excess power that is added at small scales in Model III. One possi-
ble reason for this is that the cut-off affects the shape of the power
spectrum at k � kc, whereas the effect of adding extra power is
more localized. We may conclude that skewness is able to retain
information about a cut-off in the initial power spectrum if the cut-
off scale is not strongly non-linear. This may not have implications
for observational signatures of a cut-off as observations of galaxy
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clustering are restricted to the redshift space and it has been shown
that the redshift space distortions in the non-linear regime erase
differences between models (Bagla & Ray 2006).

The number density of haloes at scales comparable to and smaller
than the cut-off is smaller than that in the other models, even after
the cut-off scale becomes non-linear. The mass function appears to
be the most sensitive indicator of a cut-off in the power spectrum in
the mildly non-linear regime.

4 D ISCUSSION

We find that the memory of localized variations of initial conditions
is erased in the quasi-linear regime. This erasure is almost complete
in measures of the second moment, e.g. the two-point correlation
function shown here. We have checked that the same is true of
the power spectrum and rms fluctuations in mass. This loss of
information has been pointed out in earlier work (Little et al. 1991;
Bagla & Padmanabhan 1997b). The skewness appears to be a better
indicator of a cut-off in the initial power spectrum, at least in the
quasi-linear regime. We find that the skewness for Model II is
distinctly higher than that for Model I or III, even when the scale of
non-linearity is much larger than the cut-off scale. Number densities
of haloes are a very faithful indicator of the cut-off, even at late
times. This is to be expected given that the number density of haloes
can be predicted fairly accurately using the Press–Schechter mass
function (Press & Schechter 1974) that relies only on the initial
power spectrum.

The question now arises as to how may we interpret these results.
Here, we would like to recall the key conclusion of Paper I in the
present series (Bagla et al. 2005). In Paper I, we studied the collapse
of a plane wave with varying amount of collapsed haloes at a much
smaller scale (as compared to wavelength of the plane wave). We
found that the thickness of pancake that forms due to collapse of the
plane wave is smaller if collapsed haloes are present. The reason
for smaller thickness is that the gravitational interaction of infalling
clumps takes away some of the longitudinal momentum and leads
to an increase of the transverse momentum. Thinner pancakes im-
ply a higher density, and clumps are able to grow very rapidly in
such an environment. We were motivated to study the collapse of
a plane wave, as it is known from the Zel’dovich approximation
(Zel’Dovich 1970) that locally generic collapse is planar leading to
the formation of pancakes.

In case of generic initial conditions that we consider here, there
is no fixed large scale that is collapsing as we have perturbations
at all scales. However, we have ensured that the perturbations at
large scales are the same in all the three models. In this case, the
effect of power on large scales is to cause collapse around peaks of
density or, equivalently, empty the voids. The latter picture is more
attractive as it also tells us why collapse of perturbations at a scale
leads to the enhancement of power at smaller scales without any
loss of power at the original scale: emptying under dense regions
simply puts more and more matter in thin walls around the void that
forms. We can say that the power is transferred from the scale of
perturbation, that essentially is the radius of the void that forms, to
the scale of thickness of pancakes surrounding the void. As a given
scale becomes non-linear, we begin to see voids corresponding to
this scale. Matter that collapsed at an earlier stage gets pushed
into the pancakes surrounding the voids. This information about the
shape of the initial power spectrum at scales smaller than the scale of
non-linearity is mostly restricted to the distribution of matter within
pancakes. This, in our view, explains the erasure of memory of
initial conditions for the two-point correlation function. The mass

function and skewness are more sensitive to the arrangement of
matter within pancakes, and hence these remain different for the
model with a cut-off. Once the scale of cut-off becomes strongly
non-linear, most of the perturbations at this scale are expected to
be part of highly overdense haloes. At this stage, we expect that all
the indicators of clustering will lose information about the details
of the initial power spectrum at this stage.

In Models I and III, there is significant amount of initial power
at small scales. This leads to a fragmented appearance of pancakes,
and clearly pancakes cannot be thinner than the clumps. In Model II,
there is no initial power at small scales. Power is generated at these
scales by collapse of larger modes, power grows very rapidly at
small scales and the non-linear power spectrum in this case catches
up with the power spectrum for the other two models.

Model III has significantly more power as compared with the
reference model at small scales. This leads to a more rapid growth
of perturbations at these scales, as is seen in the number density of
collapsed haloes at the relevant scales at early times. At late times,
these haloes are assimilated into bigger haloes, and we rapidly lose
any signatures of the excess power. We expect the excess power to
lead to thinner pancakes, motivated by conclusions of Paper I. How-
ever, the scale of pancakes is such that this feature is not apparent.

Another approach towards understanding the lack of effect of
variations in power spectrum at small scales on larger, non-linear
scales is based on the equation for evolution of density contrast
(Peebles 1974). It has been shown that the leading order effect of
virialized haloes on modes at much larger scales vanishes at the
leading order. In case of arbitrary motion of a group of particles, a
k4 tail is generated in the power spectrum at k → 0 if there is no
initial power at these scales. In general, the influence of motions
of particles at small scales to density perturbations is limited due
to the k2 behaviour2 of the mode coupling terms in equations that
describe the evolution of density contrast for a system of particles
(Peebles 1974). The magnitude of the mode coupling at this order is
proportional to the departure from virial equilibrium for the system
of particles.

It is possible to consider the equations and compute the leading
order contribution of interacting haloes. Clearly, this also must scale
as O(k2) for density contrast, but it is instructive to see if we can
quantify the level to which the internal structure of clusters matters
for coupling of the density fluctuations. A detailed calculation and
analysis of this is presented in a forthcoming manuscript (Bagla, in
preparation). We summarize a few key points here.

(i) It can be shown that the leading order contribution to mode
coupling for interacting haloes comes from the halo–halo interaction
where the haloes may be assumed to be point masses.

(ii) There is a next to leading order contribution due to tidal
interaction of clusters.

(iii) The two contributions scale as k2, making the contribution
to power spectrum as O(k4).

(iv) The magnitude of the leading order term is proportional to
the departure from virial equilibrium for haloes treated as point
masses.

The treatment can be generalized to an arbitrary number of haloes,
and we can also study the effects of coupling between a cluster
and the large-scale density distribution. These conclusions explain
the results of our numerical experiments, and give a reason as to

2 A k2 dependence in density contrast translates into a k4 dependence in the
power spectrum.
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why gravitational clustering in an expanding universe appears to be
almost renormalizable.

5 SU M M A RY

Results presented in the preceding section show that for a hierar-
chical model, there is little effect of features at small scales (high
wavenumber) in power spectrum on collapse of perturbations at
larger scales. At the same time, we see that the effect of features
can be seen in several statistical indicators at the scales of features
and also at smaller scales. The key conclusion that we can draw is
that if we modify the power spectrum at small scales, there is no
discernable effect of these modifications at larger scales. This has
implications in several situations.

(i) Cosmological N-body simulations start with initial conditions
that do not sample the power spectrum at large wavenumbers. In
typical simulations of this type, a grid is used to generate initial con-
ditions and only modes up to the Nyquist wavenumber are sampled.
Indeed, if the number of particles is smaller than the number of grid
cells used for generating initial conditions, the effective upper limit
to wavenumbers is even more restricted (Bagla & Padmanabhan
1997a). The missing part of the power spectrum does not have any
impact on the evolution of non-linear structures at scales larger than
the cut-off scale. We expect the effects of missing modes at large
wavenumbers to be less and less relevant as larger length scales
(smaller wavenumbers) become non-linear.

(ii) It has been pointed out that the choice of pre-initial conditions
and the epoch at which the initial conditions are set up can lead to
spurious growth of some modes (Joyce et al. 2005; Gabrielli et al.
2006; Marcos et al. 2006; Baertschiger et al. 2007a,b,c; Joyce &
Marcos 2007a,b). Clearly, these effects must be suppressed as the
modes with spurious growth become non-linear.

(iii) Generation of perturbations in the early universe and their
evolution towards the end of the inflationary phase can lead to a
scale-dependent evolution of modes (Malquarti, Leach & Liddle
2004; di Marco et al. 2007). Our work clearly shows that such
features will be impossible to detect if these are at scales that are
strongly non-linear and difficult to detect if these are at scales that
are mildly non-linear. If scales where such variations occur are
already non-linear, then these variations do no affect collapse of
larger scales. Of course, if the scales where such variations occur
are linear, then these can be probed using galaxy clustering.
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