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ABSTRACT
N-body simulations are an important tool in the study of formation of large-scale structures.
Much of the progress in understanding the physics of galaxy clustering and comparison with
observations would not have been possible without N-body simulations. Given the importance
of this tool, it is essential to understand its limitations as ignoring these can easily lead to
interesting but unreliable results. In this paper, we study the limitations due to the finite size of
the simulation volume. In an earlier work, we proposed a formalism for estimating the effects
of a finite box size on physical quantities and applied it to estimate the effect on the amplitude
of clustering, mass function. Here, we extend the same analysis and estimate the effect on
skewness and kurtosis in the perturbative regime. We also test the analytical predictions from
the earlier work as well as those presented in this paper. We find good agreement between the
analytical models and simulations for the two-point correlation function and skewness. We
also discuss the effect of a finite box size on relative velocity statistics and find the effects
for these quantities scale in a manner that retains the dependence on the averaged correlation
function ξ̄ .

Key words: gravitation – methods: N-body simulations – methods: numerical – cosmology:
theory – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

Large-scale structures like galaxies and clusters of galaxies are
believed to have formed by gravitational amplification of small per-
turbations. For an overview and original references, see e.g. Peebles
(1980), Peacock (1999), Padmanabhan (2002) and Bernardeau et al.
(2002). Density perturbations are present at all scales that have been
observed (Percival et al. 2007; Komatsu et al. 2009). Understanding
the evolution of density perturbations for systems that have fluctu-
ations at all scales is essential for the study of galaxy formation
and large-scale structures. The equations that describe the evolu-
tion of density perturbations in an expanding universe have been
known for a long time (Peebles 1974), and these are easy to solve
when the amplitude of perturbations is much smaller than unity.
These equations describe the evolution of density contrast defined
as δ(r, t) = [ρ(r, t) − ρ̄(t)]/ρ̄(t). Here, ρ(r, t) is the density at
r at time t and ρ̄ is the average density in the universe at that
time. These are densities of non-relativistic matter, the component
that clusters at all scales and is believed to drive the formation of
large-scale structures in the universe. Once the density contrast at

�E-mail: jasjeet@hri.res.in (JSB); jayanti@nra.tifr.res.in (JP); nishi@hri.
res.in (NK)

relevant scales becomes large, i.e. |δ| ≥ 1, the perturbation becomes
non-linear and coupling with perturbations at other scales cannot be
ignored. The equations that describe the evolution of density per-
turbations cannot be solved for generic perturbations in this regime.
N-body simulations (Bagla & Padmanabhan 1997b; Bertschinger
1998; Bagla 2005; Dolag et al. 2008) are often used to study the
evolution in this regime. Alternative approaches can be used if
one requires only a limited amount of information and in such a
case either quasi-linear approximation schemes (Zel’dovich 1970;
Gurbatov, Saichev & Shandarin 1989; Matarrese et al. 1992;
Brainerd, Scherrer & Villumsen 1993; Bagla & Padmanabhan
1994; Sahni & Coles 1995; Hui & Bertschinger 1996; Bernardeau
et al. 2002) or scaling relations (Davis & Peebles 1977; Hamilton
et al. 1991; Jain, Mo & White 1995; Kanekar 2000; Nityananda &
Padmanabhan 1994; Peacock & Dodds 1994; Padmanabhan 1996;
Padmanabhan et al. 1996; Peacock & Dodds 1996; Ma 1998; Smith
et al. 2003) suffice.

In cosmological N-body simulations, we simulate a representa-
tive region of the universe. This is a large but finite volume and
periodic boundary conditions are often used. Almost always, the
simulation volume is taken to be a cube. Effect of perturbations
at scales smaller than the mass resolution of the simulation and of
perturbations at scales larger than the box is ignored. Indeed, even
perturbations at scales comparable to the box are under sampled.
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It has been shown that perturbations at small scales do not influ-
ence collapse of perturbations at much larger scales in a significant
manner (Peebles 1974, 1985; Little, Weinberg & Park 1991; Bagla
& Padmanabhan 1997a; Couchman & Peebles 1998; Bagla, Prasad
& Ray 2005; Bagla & Prasad 2009). This is certainly true if the
scales of interest are in the non-linear regime (Bagla & Padman-
abhan 1997a; Bagla & Prasad 2009). Therefore, we may assume
that ignoring perturbations at scales much smaller than the scales
of interest does not affect results of N-body simulations.

Perturbations at scales larger than the simulation volume can af-
fect the results of N-body simulations. Use of the periodic boundary
conditions implies that the average density in the simulation box
is same as the average density in the universe, in other words we
ignore perturbations at the scale of the simulation volume (and at
larger scales). Therefore, the size of the simulation volume should
be chosen so that the amplitude of fluctuations at the box scale (and
at larger scales) is ignorable. If the amplitude of perturbations at
larger scales is not ignorable then clearly the simulation is not a
faithful representation of the model being studied. It is not obvious
as to when fluctuations at larger scales can be considered ignorable,
indeed the answer to this question depends on the physical quantity
of interest, the model being studied and the specific length/mass
scale of interest as well.

The effect of a finite box size has been studied using N-body
simulations and the conclusions in this regard may be summarized
as follows.

(i) If the amplitude of density perturbations around the box scale
is small (δ < 1) but not much smaller than unity, simulations un-
derestimate the correlation function though the number density of
small mass haloes does not change by much (Gelb & Bertschinger
1994a,b). In other words, the formation of small haloes is not dis-
turbed but their distribution is affected by non-inclusion of long
wave modes.

(ii) In the same situation, the number density of the most massive
haloes drops significantly (Gelb & Bertschinger 1994a,b; Bagla &
Ray 2005).

(iii) Effects of a finite box size modify values of physical quan-
tities like the correlation function even at scales much smaller than
the simulation volume (Bagla & Ray 2005).

(iv) The void spectrum is also affected by finite size of the sim-
ulation volume if perturbations at large scales are not ignorable
(Kauffmann & Melott 1992).

(v) It has been shown that properties of a given halo can change
significantly as the contribution of perturbations at large scales is
removed to the initial conditions but the distribution of most internal
properties remains unchanged (Power & Knebe 2006).

(vi) We presented a formalism for estimating the effects of a
finite box size in Bagla & Prasad (2006). We used the formalism to
estimate the effects on the rms amplitude of fluctuations in density,
as well as the two-point correlation function. We used these to
further estimate the effects on the mass function and the multiplicity
function.

(vii) The formalism mentioned above was used to estimate
changes in the formation and destruction rates of haloes (Prasad
2007).

(viii) It was pointed out that the second-order perturbation theory
and corrections arising due to this can be used to estimate the effects
due to a finite box size (Takahashi et al. 2008). This study focused
specifically on the effects on baryon acoustic oscillations.

(ix) If the objects of interest are collapsed haloes that correspond
to rare peaks, as in the study of the early phase of reionization, we

require a fairly large simulation volume to construct a representative
sample of the universe (Barkana & Loeb 2004; Reed et al. 2008).

In some cases, one may be able to devise a method to ‘correct’ for
the effects of a finite box size (Colombi, Bouchet & Schaeffer 1994),
but such methods cannot be generalized to all statistical measures
or physical quantities.

Effects of a finite box size modify values of physical quantities
even at scales much smaller than the simulation volume (Bagla &
Ray 2005; Bagla & Prasad 2006). A workaround for this problem
was suggested in the form of an ensemble of simulations to take
the effect of convergence due to long wave modes into account
(Sirko 2005), the effects of shear due to long wave modes are
ignored here. However, it is not clear whether the approach where
an ensemble of simulations is used has significant advantages over
using a sufficiently large simulation volume.

We review the basic formalism we proposed in (Bagla & Prasad
2006) in Section 2. We then extend the original formalism to the
cases of non-linear amplitude of clustering and also for estimating
changes in skewness and other reduced moments of counts in cells.
This is done in Section 3. In Section 4, we confront our analyti-
cal models with N-body simulations. We end with a discussion in
Section 5.

2 TH E F O R M A L I S M

Initial conditions for N-body simulations are often taken to be a real-
ization of a Gaussian random field with a given power spectrum (for
details, see e.g. Bagla & Padmanabhan 1997b; Bertschinger 1998;
Bagla 2005; Dolag et al. 2008). The power spectrum is sampled
at discrete points in the k-space between the scales correspond-
ing to the box size (fundamental mode) and the grid size (Nyquist
frequency/mode). Here, k is the wave vector.

We illustrate our approach using rms fluctuations in mass σ (r),
but as shown below, the basic approach can be generalized to any
other quantity in a straightforward manner. In general, σ (r) may be
defined as follows:

σ 2(r) =
∫ ∞

0

dk

k

k3P (k)

2π2
W 2(kr). (1)

Here, P(k) is the power spectrum of density contrast, r is the co-
moving length-scale at which rms fluctuations are defined, k =√

k2
x + k2

y + k2
z is the wave number and W(kr) is the Fourier trans-

form of the window function used for sampling the density field.
The window function may be a Gaussian or a step function in real
or k-space. We choose to work with a step function in real space
where W (kr) = 9(sin kr − kr cos kr)2/(k6r6) (see e.g. section 5.4
of Padmanabhan (1993) for further details). In an N-body simula-
tion, the power spectrum is sampled only at specified points in the
k-space. In this case, we may write σ 2(r) as a sum over these points.
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−
∫ 2π/Lbox

0

dk

k

k3P (k)

2π2
9

[
sin kr − kr cos kr

k3r3

]2

= σ 2
0 (r) − σ 2

1 (r, Lbox). (2)

Here, σ 2
0(r) is the expected level of fluctuations in mass at scale r

for the given power spectrum and σ 2(r , Lbox) is what we get in an
N-body simulation at early times. We have assumed that we can
approximate the sum over the k modes sampled in initial conditions
by an integral. Further, we make use of the fact that small scales
do not influence large scales to ignore the error contributed by the
upper limit of the integral. This approximation is valid as long as
the scales of interest are more than a few grid lengths.

In the approach outlined above, the value of σ 2 at a given scale
is expressed as a combination of the expected value σ 2

0 and the
correction due to the finite box size σ 2

1. Here, σ 2
0 is independent of

the box size and depends only on the power spectrum and the scale
of interest. It is clear than σ 2(r , Lbox) ≤ σ 2

0(r) and σ 2
1(r , Lbox) ≥

0. It can also be shown that for hierarchical models, dσ 2
1(r , Lbox)/

dr ≤ 0, i.e. σ 2
1(r , Lbox) increases or saturates to a constant value as

we approach small r.
At large scales, σ 2

0(r) and σ 2
1(r , Lbox) have a similar magnitude,

and the rms fluctuations in the simulation become negligible as
compared to the expected values in the model. As we approach small
r, the correction term σ 2

1(r , Lbox) is constant and for most models it
becomes insignificant in comparison with σ 2

0(r). In models where
σ 2

0(r) increases very slowly at small scales or saturates to a constant
value, the correction term σ 2

1 can be significant at all scales.
This formalism can be used to estimate corrections for other

estimators of clustering, e.g. the two-point correlation (see Bagla &
Prasad (2006) for details).

The estimation of the rms amplitude of density perturbations
allows us to use the theory of mass function and estimate a number
of quantities of interest. For details, we again refer the reader to
Bagla & Prasad (2006) but we list important points here.

(i) The fraction of mass in collapsed haloes is underestimated
in N-body simulations. This underestimation is most severe near
the scale of non-linearity, and falls off on either side. If we con-
sider fractional underestimation in the collapsed fraction then this
increases monotonically from small to large scales.

(ii) The number density of collapsed haloes is underestimated
at scales larger than the scale of non-linearity. The maximum in
collapsed fraction near the scale of non-linearity leads to a change
of sign in the effect of a finite box size for the number density of
haloes at this scale: at smaller scales, the number density of haloes
is overestimated in simulations. This can be understood on the basis
of a paucity of mergers that otherwise would have led to formation
of high-mass haloes.

(iii) The above conclusions are generic and do not depend on the
specific model for mass function. Indeed, expressions for both the
Press–Schechter (Press & Schechter 1974) and the Sheth–Tormen
(Sheth & Tormen 1999; Sheth, Mo,& Tormen 2001) mass functions
are given in Bagla & Prasad (2006), and we have also checked the
veracity of our claims for the Jenkins et al. (2001) mass function.

3 R E D U C E D MO M E N T S

In this section, we outline how the formalism and results outlined
above may be used to estimate the effect of a finite box size on
reduced moments. Reduced moments like the skewness and kur-
tosis can be computed using the perturbation theory in the weakly
non-linear regime (Bernardeau 1994). The expected values of the

reduced moments are related primarily to the slope of the initial or
linearly extrapolated σ 2(r), as all non-Gaussianities are generated
through evolution of the Gaussian initial conditions and the initial
σ 2(r) characterizes this completely. We can use the expression for
σ 2(r) as it is realized in simulations with a finite box size to compute
the expected values of reduced moments in N-body simulations in
the weakly non-linear regime:

S3 = 34

7
+ ∂ ln σ 2

∂ ln r

= 34

7
+ ∂ ln

(
σ 2

0 − σ 2
1

)
∂ ln r

= 34

7
+ ∂ ln σ 2

0

∂ ln r
+ ∂ ln

(
1 − σ 2

1 /σ 2
0

)
∂ ln r

= S30 − S31 .
(3)

S30 is the expected value of S3 for the given mode, i.e. when there
are no box corrections and S31 is the correction term in S3 due to a
finite box size. Box-size effects lead to a change in slope of σ 2, and
hence the effective value of n changes. The last term is the offset
in skewness in N-body simulations as compared with the expected
values in the model being simulated. We would like to emphasize
that this expression is valid only in the weakly non-linear regime.

In general, we expect σ 2
1/σ

2
0 to increase as we go to larger scales.

Thus the skewness is underestimated in N-body simulations, and
the level of under estimation depends on the slope of σ 2

1/σ
2
0 as

compared to the slope of σ 2
0. In the limit of small scales where σ 2

1

is almost independent of scale, we find that the correction is
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. (4)

Here, n is the index of the initial spectrum we are simulating. For
non-power-law models, this will also be a function of scale. The
correction becomes more significant at larger scales and the net
effect, as noted above, is to underestimate S3.

Similar expressions can be written down for kurtosis and other
reduced moments using the approach outlined above. We give the
expression for kurtosis below, but do not compute further moments
as the same general principle can be used to compute these as well:

S4 = 6071
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3
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(

1
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4 N- B O DY SI M U L AT I O N S

In this section, we compare the analytical estimates for finite box-
size effects for various quantities with N-body simulations. Such a
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Table 1. This table lists characteristics of N-body simulations used in
our study.

Model Description Cut off (kc)

A1 Power law, n − 2.0 kf

A2 Power law, n − 2.0 2kf

A3 Power law, n − 2.0 4kf

B1 Power law, n − 2.5 kf

B2 Power law, n − 2.5 2kf

B3 Power law, n − 2.5 4kf

C1 �CDM, WMAP-5 BF, Lbox = 160 h−1 Mpc kf

C2 �CDM, WMAP-5 BF, Lbox = 160 h−1 Mpc 2kf

C3 �CDM, WMAP-5 BF, Lbox = 160 h−1 Mpc 4kf

Note. Here, the spectral index gives the slope of the initial power
spectrum, and the cut-off refers to the wavenumber below which all
perturbations are set to zero: kf = 2π/Lbox is the fundamental wave
mode for the simulation box. All models were simulated using the
TREEPM code (Bagla 2002; Bagla & Ray 2003; Khandai & Bagla 2008).
2563 particles were used in each simulation, and the PM calculations
were done on a 2563 grid. Power spectra for both the A and the B series
of simulations were normalized to ensure σ = 1 at the scale of 8 grid
lengths at the final epoch if there is no box-size cut-off. A softening
length of 0.1 grid lengths was used as the evolution of small-scale
features is not of interest in this study. Simulations for both the A and
the B series were done with the Einstein–deSitter background and the
C series used the WMAP-5 best-fitting (BF) model as the cosmological
background, as also for the power spectrum and transfer function.

comparison is relevant in order to test the effectiveness of approxi-
mations made in computing the effects of a finite box size. We have
made the following approximations.

(i) Effects of mode coupling between the scales that are taken
into account in a simulation and the modes corresponding to scales
larger than the simulation box are ignored. We believe that this
should not be important unless the initial power spectrum has a
sharp feature at scales comparable with the simulation size.1

(ii) Sampling of modes comparable to the box size is sparse, and
the approximation of the sum over wave modes as an integral can be
poor if the relative contribution of these scales to σ 1 is significant.

Table 1 gives details of the N-body simulations used in this pa-
per. In order to simulate the effects of a finite box size, we used the
method employed by Bagla & Ray (2005) where initial perturba-
tions are set to zero for all modes with wavenumber smaller than
a given cut-off kc. The initial conditions are exactly the same as
the reference simulation in each series in all other respects. For a
finite simulation box, there is a natural cut-off at the fundamental
wavenumber kf = 2π/Lbox and simulations A1, B1 and C1 impose
no other cut-off. These are the reference simulations for the two
series of simulations. Simulations A2, B2 and C2 sample perturba-
tions at wavenumbers are larger than 2kf whereas simulations A3,
B3 and C3 are more restrictive with non-zero perturbations above
4kf . The cut-off of 2kf and 4kf corresponds to scales of 128 and
64 grid lengths, respectively. For the C series of simulations, the
cut-off of 2kf and 4kf corresponds to scales of 80 and 40 h−1 Mpc,
respectively.

1 For example, simulations of baryon acoustic oscillations imprinted in the
matter power spectrum may be affected by mode coupling even though the
amplitude of fluctuations at the relevant scales is very small (Peebles 1974;
Bagla & Padmanabhan 1997a; Takahashi et al. 2008).

The background cosmology was taken to be Einstein–deSitter for
the A and B series simulations. The best-fitting � cold dark matter
(�CDM) model from Wilkinson Microwave Anisotropy Probe 5
(WMAP-5) (Dunkley et al. 2009) was used for the C series of
simulations.

In order to ensure that the initial conditions do not get a rare
contribution from a large-scale mode, we forced |δk|2 = P (k) while
keeping the phases random for modes k ≥ 6kf .

We have chosen to work with models where box-size effects
are likely to be significant, particularly with the larger cut-off
in wavenumber. This has been done to test our analytical model
in a severe situation, and also to further illustrate the difficulties in
simulating models with large negative indices.

We present results from N-body simulations in the following
section.

4.1 Results

We begin with a visual representation of the simulations. Fig. 1
shows a slice from simulations A1, A2 and A3 at two different
epochs. The left-hand panel is for the early epoch when rnl = 2 grid
lengths in the model without a cut-off, and the right-hand panel is for
rnl = 8 grid lengths. The top row is for the simulation A1, the middle
row is for the simulation A2 and the lowest row is for the simulation
A3. The relevance of box-size effects is apparent as the large-scale
structure in the three simulations is very different even at the early
epoch when rnl = 2, much smaller than the effective box size
for these simulations. Disagreement between different simulations
becomes even more severe as we go to the later epoch with rnl = 8
grid lengths.

Visual appearance for simulations B1, B2 and B3, shown in
Fig. 2, follows the same pattern. In this case, the spectral index is
closer to −3 than for simulations of the A series shown in Fig. 1,
hence the larger scale modes are more important for evolution of
perturbations even at small scales. It is interesting to note that the
largest underdense region in simulation B1 at early times is already
comparable to the box size, and hence we require Lbox/rnl � 128 for
the effects of a finite box size to be small enough to be ignored for
simulations of the power-law model with n = −2.5. This constraint
is even stronger for models with the slope of the power spectrum
closer to n = −3.

Fig. 3 shows the visual appearance for the C series of simulations.
Once again we find a significant change in appearance even with
kc = 2 kf at the earlier epoch, z = 1 in this case. This indicates
that a box size of 80 h−1 Mpc is insufficient if we wish to achieve
convergence in the large-scale distribution of matter in models of
cosmological interest. This reinforces conclusions of Bagla & Ray
(2005) where we found that a box size of around 150 h−1 Mpc is
required for convergence in simulations of �CDM models.

4.2 Clustering amplitude

The left-hand column in Fig. 4 shows the volume-averaged correla-
tion function ξ̄ for the simulations being studied here. The top-left
panel is for simulations A1, A2 and A3 at an early epoch (rnl = 2
grid lengths in the model without a cut-off), and the second panel
from top in this column shows ξ̄ for the same simulations at a
late epoch (rnl = 8 grid lengths). The corresponding plots in the
second column show the same for the simulations in the B series,
and the third column is for the C series of simulations. We have
shown ξ̄ as a function of scale in these panels. Also shown are the
linearly extrapolated values of ξ̄ computed using our formalism for
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Figure 1. The first, second and third rows in this figure show the slices for models A1, A2 and A3 (see table for details), respectively, at an early epoch when
the scale of non-linearity is 2 grid lengths (left-hand column) and a later epoch when the scale of non-linearity is 8 grid lengths (right-hand column).

estimating the effects of a finite box size. Data from N-body simu-
lations are shown as thick curves whereas the theoretical estimate
is shown as thin curves with the corresponding line style. It is clear
that the analytical estimate for ξ̄ in a finite box captures the quali-
tative nature of the change from the expected values. The match is
better at large scales where ξ̄ is small, and this is expected as the
analytical estimate is linearly extrapolated whereas we are compar-
ing it with results from an N-body simulation. Our analysis works

better for the n = −2 model used in the A series of simulations and
for the �CDM model in the C series of simulations as compared
to the B series of simulations for the n = −2.5 model where it sys-
tematically underestimates the suppression of ξ̄ . It is noteworthy
that even in this case the differences between the simulation and the
analytical model at large scales is of the order of 20–30 per cent
whereas the box-size effect changes the clustering amplitude by
more than an order of magnitude at some scales. Thus we may state
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Figure 2. The first, second and third rows in this figure show the slices for the models B1, B2 and B3, respectively, at an early epoch when the scale of
non-linearity is 2 grid lengths (left-hand column) and a later epoch (right-hand column) when the scale of non-linearity is 8 grid lengths (right-hand column).

that the model captures the essence of the box-size effects at large
scales.

4.3 Skewness

The lower two rows in Fig. 4 show the corresponding plots for S3,
shown here as a function of scale. Apart from the lines that show
S3 from simulations (thick lines) and our analytical estimate for the

weakly non-linear regime (thin lines), we also show the value of S3

expected in the weakly non-linear regime in absence of any finite
box-size effects for the three series of simulations. The analytical
estimate of S3, computed using equation (3), matches well with the
values in N-body simulation at large scales. It is noteworthy that the
match between the two is better for a larger cut-off in wavenumbers.
We believe that this is due to sparse sampling of the initial power
spectrum at scales comparable to the box size and due to this our
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Figure 3. The first, second and third rows in this figure show the slices for the �CDM simulations C1, C2 and C3, respectively, at an early epoch (z = 1)
(left-hand column) and the present epoch (z = 0) (right-hand column).

approximation of the sum over wave modes by an integral is not
very good.

4.4 Mass function

Fig. 5 shows the number density of haloes for the three series of
simulations as a function of mass of haloes. The haloes have been
identified using the Friends of Friends method with a linking length

of 0.1 in units of the grid length. Plotted in the same panels are the
expected values computed using the Press–Schechter mass function
with a correction for the finite box size.

For each series of simulations, and at each epoch, we fitted the
value of δc to match the simulation with the natural cut-off at the
box scale. The same value of δc is then used for other simulations
of the series.

We find that the features of the mass function are reproduced
correctly by the analytical approximation, namely:
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Figure 4. The first two rows in this figure show the average two-point correlation function ξ̄ , and the next two rows show skewness S3. The first and third
rows represent the early epoch, and the second and fourth rows represent the later epoch. In all the panels, models with kc = kf , kc = 2kf and kc = 4kf

are represented by the solid, dashed and dot–dashed lines, respectively. In all the panels, corresponding to every model in simulation (thick lines) theoretical
estimates (thin lines) are also shown. Horizontal dashed lines in the lower rows show the expected value of S3 in the absence of any box-size correction for the
power-law models.

(i) the number density of the most massive haloes declines
rapidly as the effective box size is reduced and

(ii) the number density of low-mass haloes increases as the
effective box size is reduced. This feature is apparent only at the
late epoch.

4.5 Velocities

In our discussion of analytical estimates of the effects of a finite box
size on observable quantities, we have so far omitted any discus-
sion of velocity statistics. The main reason for this is that the power
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Figure 5. This figure shows the mass function N (M) dM for the three series of simulations. The top row shows this for the early epoch and the lower row
corresponds to the late epoch. In all the panels, models with kc = kf , kc = 2kf and kc = 4kf are represented by the solid, dashed and dot–dashed lines,
respectively. In all the panels, corresponding to every model in simulation (thick lines) theoretical estimates (thin lines) are also shown.

spectrum for velocity is different as compared to the power spectrum
for density and one can get divergences for quantities analogous to
the second-order estimators analogous to σ 2 for models with −3
< n ≤ −1. This is due to a more significant contribution of long
wave modes to the velocity field than is the case for density. Rel-
ative velocity statistics are more relevant on physical grounds, and
we use these for an empirical study of the effects of a finite box size
on velocities. It is also important to check whether considerations
related to velocity statistics put a stronger constraint on the box size
required for simulations of a given model.

We measure the radial pair velocity and also the pair velocity
dispersion in the simulations used in this work. These quantities are
defined as follows:

h(r) = −〈(vj − vi) · (rj − r i)〉
aHr2

ij

, (6)

where the averaging is done over all pairs of particles with separation
r ij = |(r j −r i)| = r . In practice this is done in a narrow bin in r. Here,
a is the scalefactor, H is the Hubble parameter and vi is the velocity
of the ith particle. Similarly, the relative pair velocity dispersion is
defined as

σ 2
v (r) =

〈
|vij|2

〉
a2H 2r2

ij

, (7)

where vij is the relative velocity for a pair of particles, and averaging
is done over pairs with separation r. Dividing by a2H 2r2

ij gives us a
dimensionless quantity and the usefulness of this is apparent from
the following discussion.

We have plotted the radial component of pair velocity as a func-
tion of scale r in the top two rows of Fig. 6. Panels in these rows
show the pair velocity for the different models at early and late
epochs. In each panel, we find that the dependence of pair velocity

on r is very sensitive to the small k cut-off used in generating the
initial conditions for the simulation. It has been known for some
time (Hamilton et al. 1991; Nityananda & Padmanabhan 1994) that
h is an almost universal function of ξ̄ . This is certainly true in the
linear regime where h = 2ξ̄ /3 for clustering in an Einstein–de Sitter
universe (Peebles 1980). In order to exploit this aspect, and also to
check whether the relation between h and ξ̄ in the weakly non-linear
regime is sensitive to the box size, we plot h as a function of ξ̄ at
the same scale in the last two rows of Fig. 6. We find that all runs of
a series fall along the same line and variations induced by the finite
box size are small even in the non-linear regime.

Fig. 7 shows the relative velocity dispersion as a function of scale
(top two rows) and also as a function of ξ̄ (lowest two rows). Again,
we find that although the relative pair velocity dispersion at a given
scale is sensitive to the size of the simulation box, its dependence
on ξ̄ is not affected by the large-scale cut-off. Thus we can use
estimates of the correction in ξ̄ to get an estimate of corrections in
pair velocity statistics.

5 SU M M A RY

The conclusions of this paper may be summarized as follows.

(i) We have extended our formalism for estimating the effects of
a finite box size beyond the second moment of the density field.
We have given explicit expressions for estimating the skewness and
kurtosis in the weakly non-linear regime when a model is simulated
in a finite box size.

(ii) We have tested the predictions of our formalism by comparing
these with the values of physical quantities in N-body simulations
where the large-scale modes are set to zero without changing the
small-scale modes.

c© 2009 The Authors. Journal compilation c© 2009 RAS, MNRAS 395, 918–930
Downloaded from https://academic.oup.com/mnras/article-abstract/395/2/918/1747372/Effects-of-the-size-of-cosmological-N-body
by Inter-University Centre for Astronomy and Astrophysics user
on 29 September 2017



Cosmological N-body simulations: size matters 927

Figure 6. The first two rows show the pair velocity as a function of distance, and the lowest two rows show the pair velocity as a function of average two-point
correlation function. The first and third rows represent the early epoch, and second and fourth rows represent the later epoch. In all panels, models with kc =
kf (A1, B1 and C1), kc = 2kf (A2, B2 and C2) and kc = 4kf (A3, B3 and C3) are represented by the solid, dashed and dot–dashed lines, respectively.

(iii) We find that the formalism makes accurate predictions for
the finite box-size effects on the averaged two-point correlation
function ξ̄ and skewness.

(iv) We find that the formalism correctly predicts all the features
of the mass function of a model simulated in a finite box size.

(v) We studied the effects of a finite box size on relative velocities.
We find that the effects on relative velocities mirror the effects
on ξ̄ .

It is desirable that in N-body simulations the intended model is
reproduced at all scales between the resolution of the simulation
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Figure 7. The first two rows show the pair velocity dispersion as a function of distance, and the lowest two rows show the pair velocity dispersion as a function
of average two-point correlation function. The first and third rows represent the early epoch, and second and fourth rows represent the later epoch. In all panels,
models with kc = kf (A1, B1 and C1), kc = 2kf (A2, B2 and C2) and kc = 4kf (A3, B3 and C3) are represented by the solid, dashed and dot–dashed lines,
respectively.

and a fairly large fraction of the simulation box. The outer scale
up to which the model can be reproduced fixes the effective dy-
namical range of simulations. One would like S3 to be within a
stated tolerance of the expected value at this scale. We plot S31/S30

for power-law models at the scale Lbox/20, Lbox/10 and Lbox/5 in
the left-hand panel of Fig. 8. These are plotted as a function of

n + 3. It can be shown that this ratio, as also σ 1/σ 0 are functions of
scale only through the ratio r/Lbox. We find that S31/S30 is large for
large negative n and decreases monotonically as n increases. This
ratio is smaller than 10 per cent only for n ≥ 0.8 at r = Lbox/5.
The corresponding number for r = Lbox/10 is n ≥ −1.6, and for
Lbox/20 is n ≥ −2.8 Clearly, the effective dynamic range decreases
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Figure 8. The left-hand panel shows the variation in the fractional correction in S3 i.e. S31 /S30 (see equation 4), with the index of power spectrum at the scales
Lbox/5 (top curve), Lbox/10 (middle curve) and Lbox/20 (lowest line). For a given tolerance of the error in S3 due to finite box effects, this gives us the largest
scale at which the simulation may be expected to give reliable results. The middle panel shows contours of C1 at the scale of non-linearity (σ 0 = 1) for values
C1 = 0.01 (top curve), 0.03 (middle curve) and 0.1 (lower curve). The contours are plotted on the Lbox/rnl − (n + 3) plane and indicates the box size required
for reliable simulations of a given model. The right-hand panel shows contours of S31 /S30 for the �CDM model that best fits the WMAP-5 data. Contours
shown are for S31 /S30 = 0.01, 0.03 and 0.1.

rapidly as n + 3 −→ 0. This highlights the difficulties associated
with simulating such models.

Similarly, one would like σ 2 and σ 2
0 to be comparable at the

scale of non-linearity. From requirements of self-similar evolution
of power-law models in simulations, we find that at the scale of non-
linearity C1 ≤ 0.03 is required for the effects of a finite box size to
be ignorable. This gives us a lower bound on Lbox/rnl for any given
model. The middle panel shows the required Lbox/rnl as a function
of n + 3 for C1 = 0.01, 0.03 and 0.1. Here, C1 is the asymptotic
value of σ 2

1 at r � Lbox and is a fairly good approximation at
small scales. We find that the required Lbox/rnl for n = −2 is more
than 100 for C2

1 = 0.03 at the scale of non-linearity. Thus we need a
simulation with Lbox ≥ 103 if we are to probe the strongly non-linear
regime (ξ̄ � 100) with some degree of confidence. Requirements
for models with n < −2 are much more stringent, and for models
like n = −2.5 even the largest simulations cannot be used to study
the asymptotic regime.

To put things in context for the favoured cosmological model,
the right-hand panel in Fig. 8 shows contours of S31/S30 in the
r − Lbox plane for the �CDM model that best fits the WMAP-5 data
(Dunkley et al. 2009). We find that in order to ensure that the error
in skewness is less than 10 per cent at a scale of 10 h−1 Mpc, we
need a simulation box of more than 200 h−1 Mpc. The required box
size is much bigger if the tolerance on error in skewness is smaller.
This is a very stringent requirement for simulations of the epoch of
reionization where one would like to get the clustering right at the
scales of a few Mpc.

Given that the formalism we have proposed works well when
compared with simulations, and the fact that calculations in this
formalism are fairly straightforward, we would like to urge the cos-
mological N-body simulations community to make use of this for-
malism. We would like to request simulators to report the fractional
corrections to the linearly extrapolated amplitude of clustering and
the fractional correction to skewness across the range of scales of
interest. This will enable users of simulations to assess potential
errors arising due to a finite simulation volume.
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